Generative AI for VFX & Games Workshop - AI4CC - AI for Content Creation

Mark Boss - Researcher @ Stability AI

Why 3D assets?

- Games and movies rely on 3D objects for rendering
- Artists are used to work with meshes
 - 3D asset generation can help teams scale

3D is time-consuming

• Creating assets is highly time-consuming

Days	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Manual	High Mesh					Texturing			Retopology		UV + Bake	Material	Import	LO
Photo- grammetry	Photos	HM + Texture	Ret	topolog	ЭУ	UV + Bake	Material & Delight	Import	LOD	Time Saved				

Estimated time for a single asset

- Pipeline per asset is long and involved
- Speeding up or replacing any tasks with AI allows to scale visual media tremendously

Table from: Create Photorealistic Game Assets - E-Book - Unity Technologies - 2017

Challenges

- 3D assets of artists are highly detailed and reach photorealism
 - No current 3D generation solution is capable of reaching that
- 3D datasets are small
 - Even more if we require more niche properties (Animation, additional material data)

Quality levels and goals • Several tasks have different goals and requirements

Pre-production

- Fast iteration
- Lower fidelity

Production - Slower iteration

- - speed
- Artistic intent

- Medium fidelity

Post-production

- Only polish
- Precision
- Iteration speed not a concern

Pre-production

- Rapid iteration essential
- Getting a feel for the scene
- Large benefits in the velocity of overall production
- Pre-production can include 3D asset generation or fast image-based explorations

Example from Evan Jones (Sped up to in-house SF3D speed)

3D Generation

SF3D: Stable Fast 3D Mesh Reconstruction with UV-Unwrapping and Illumination Disentanglement Mark Boss, Zixuan Huang, Aaryaman Vasishta, Varun Jampani

Saturday Afternoon Poster Session - Poster #37

Project Page

Image to Relightable Object

9

Image to Relightable Object

• Baked-in illumination

Ground Truth

TripoSR

Ours (SF3D)

- Baked-in illumination
- Vertex Color do not produce sharp textures

Ground Truth

TripoSR

Ours (SF3D)

- Baked-in illumination
- Vertex Color do not produce sharp textures
- Marching Cubes can generate obvious shading artifacts

Ground Truth

TripoSR

Ours (SF3D)

- Baked-in illumination
- Vertex Color do not produce sharp textures
- Marching Cubes can generate obvious shading artifacts
- No material parameters

Ground Truth

TripoSR

Ground Truth

TripoSR

- Baked-in illumination
- Vertex Color do not produce sharp textures
- Marching Cubes can generate obvious shading artifacts
- No material parameters

Ground Truth

Ours

Ground Truth

Ours

Overview

17

Overview

18

Overview

Aliasing Issues

- Previous methods used a low resolution triplane (64 x 64)
- We found that this result in grid artifacts
- These are aliasing issues (higher frequency)
- We predict high resolution 384 x 384 triplanes instead

Ours (High Resolution)

Low Resolution

25

Comparison

TripoSR

InstantMesh

Comparison

Quantitative Comparison

28

Conclusion

- Highly efficient method in generating objects from a single image (~0.3s)
 - Fast UV unwrapping proposed in method
- Enhance triplane resolution helps in texture reproduction
- Explicit mesh extraction training helps in assets quality

SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images Zixuan Huang, Mark Boss, Aaryaman Vasishta, James Matthew Rehg, Varun Jampani

Saturday Afternoon Poster Session - Poster #99

Project Page

30

Single Image To 3D

- Fast Image to 3D ~0.7s
- Based on Stable Fast 3D
- Several new key contributions

31

Regression-based and Generative Modelling

Regression-based methods:

- + Fast and align well to input
- Oversmoothed back surface

Diffusion-based methods:

- + Better back surface
- Slow and low output fidelity

32

Sparse Point Clouds as Bridge

SPAR3D aims to take the best of regression and diffusion-based modeling:

- Point sampling generates a sparse point cloud via point diffusion •
- Meshing creates a detailed mesh from the point cloud and the image

33

Sparse Point Clouds as Bridge

- + Fast: sparse point generation and efficient feedforward meshing
- + Better back surface: point sampling reduce back surface uncertainty
- + High output fidelity: meshing use image features to adjust visible surface

34

Interactive Edits with SPAR3D

35

Point Sampling via Diffusion

36
Meshing with Large Triplane Transformer

37

Qualitative Comparison

CRM

TripoSR

InstantMesh

SF3D

38

Quantitative Comparison

Inference time (seconds/image) ↓

39

Generalization to In-the-wild Images

40

Editing Examples

Add a hat on the back

Editing Examples

Re-attach floating parts

Conclusion

- SPAR3D -- SOTA 3D object reconstructor from single-view images:
 - Two-stage design inherits the benefit of regression and diffusion methods
 - Fast reconstruction speed under 1 second per image
 - Intermediate point clouds facilitate interactive editing

Demo - SF3D

Quick adoption in the community

Several interesting use cases and workflows

Blaine Brown 🗯 🤣 @blizaine · Mar 6 This workflow is really fun! 🤓 Create any 3D object you can imagine in Apple Vision Pro, FAST!

Midjourney (or other image gen) -> TripoSR (modded) - Free USDZ Converter

More info in the thread 💽 🕶 🤯

flngr

Image-based Exploration

MARBLE: Material Recomposition and Blending in CLIP-Space Ta-Ying Cheng, Prafull Sharma, Mark Boss, Varun Jampani

Saturday Morning Poster Session - Poster #230

Project Page

Material Control in Images...

Parametric Controls

Exemplar-Based Control

Material Exemplar

Previous Works

Parametric Controls

- Parametric Control
 - Finetune the entire generative model architecture
 - Overfitting on synthetic data, destroying prior knowledge of generative models

Exemplar-Based Control

- Zero-Shot Exemplar-Based Control:
 - Only allows coarse control and does not allow parametric tuning

Can we perform a series of material controls on diffusion models by manipulating the CLIP-Space alone?

Targeted Material Block Injection

Injecting into individual blocks in Denoising UNet

Context

Down, 1, 0

Up, 1, 0

Up, 1, 1

Up, 1, 2

Down, 1, 1

Down, 2, 0

Down, 2, 1

Up, 0, 0

Up, 0, 1 (Material Block)

Up, 0, 2

Targeted Material Block Injection

ZeST

Material Block Injection (Ours)

Blending Two Exemplars in CLIP Space

Material Blending

Material 1

Material Blending Results

Parametric Control – Architecture

Parametric Control Results

Context Image

New Material +

Roughness

Roughness

New Material +

Metallic

Context Image

New Material -

Transparency

New Material

Glow

Multiple Controls at Once

Increase Metallic

Increase Roughness

Parametric Control in Style

Increase in Transparency

'A teapot on a table, Van Gogh painting'

Increase in Roughness

'A teapot on a table, neon cyberpunk style painting'

Conclusion

- Wide range of novel editing controls
- Operates only in CLIP-space
- Robustness to various styles

'a blue teapot on the table, Van Gogh painting'

Increase Transparency

'Monet style, a white cup'

Increase Transparency

Stable Virtual Camera: Generative View Synthesis with Diffusion Models Jensen Zhou, Hang Gao, Vikram Voleti, Aaryaman Vasishta, Chun-Han Yao, Mark Boss, Philip Torr, Christian Rupprecht, Varun Jampani

Project Page

NVS as a Video Generation

Input: Observed View

Output: Novel Views

61

Challenges

Interpolation Smoothness

CAT3D, Gao et al., 2024 (Our reproduction)

Challenges

ViewCrafter 25 frames, Start-end input

Unclear how to deploy these models to arbitrary NVS task, Say: 5 input views, 120 target views, along a camera trajectory

Baked-in Task Assumptions

ViewCrafter, Yu et al., 2024; 4DiM, Watson et al., 2024; MotionCtrl, Wang et al., 2023

Goal Create a single model that has

High Generation Capacity

Good Interpolation Smoothness

Versatility to any NVS task

Model Architecture

Training: M-in N-out

Multi-View Diffusion Model

Target

Model Architecture

Procedural two-pass sampling

Anchor Generation

Target Generation

Single Image NVS

Single Image NVS

Sparse-view NVS

Open-world NVS

Demo for any camera trajectory

Demo for any camera trajectory

Comparison with prior works

ViewCrafter

CAT3D (our repro)

Ours

Limitations

Human

Animal

Dynamic texture

Conclusion

- A single versatile novel view synthesis network
 - High generation capacity with long video generation
 - Good interpolation smoothness
 - Versatility in terms of input view conditioning

Conclusion

Summary

- 3D and VFX production pipelines are long and complex
- Several subtasks are highly interesting as well
- Techniques covered:
 - Enable rapid prototyping in 3D (SF3D & SPAR3D)
 - Exploration from images (MARBLE & Stable Virtual Camera)

Outlook

- More control in the 3D generation and image-editing
- Reaching post-production quality levels

Feel free to ask questions