
Mathematisch-
Naturwissenschaftliche
Fakultät

Computergrafik

Masterarbeit

CNN-based BRDF parameter estimation

Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik
Computergrafik
Mark Benedikt Boss, mark.boss@student.uni-tuebingen.de, 2018

Bearbeitungszeitraum: 01.12.2017-01.05.2018

Betreuer/Gutachter: Prof. Dr. Hendrik Lensch, Universität Tübingen
Zweitgutachter: Prof. Dr. Andreas Schilling, Universität Tübingen

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und nur
mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem
Wortlaut oder dem Sinne nach anderen Werken entnommen sind, durch Angaben von
Quellen als Entlehnung kenntlich gemacht worden sind. Diese Masterarbeit wurde
in gleicher oder ähnlicher Form in keinem anderen Studiengang als Prüfungsleistung
vorgelegt.

Mark Benedikt Boss (Matrikelnummer 4067683), February 20, 2020

3

Abstract

The behavior of surfaces is an essential field in computer games and movies. An
exact representation of a real-world surface allows for a higher degree of realism.
Capturing or artistically creating these materials is a time-consuming process. Thus,
in this thesis a method which utilizes an encoder-decoder Convolutional Neural
Networks (CNN) to extract information of the Bidirectional Reflectance Distribution
Function (BRDF) automatically is proposed. Opposed to previous means this method
retrieves information of the whole surface as spatially varying BRDF-parameters
with a sufficiently high resolution for real-world usage. The capture process for
materials only requires five known light positions with a fixed camera position
and thus can be acquired even in a mobile setup. This reduces the scanning time
drastically and a material sample can be obtained in seconds with an automated
system.

Kurzfassung

Das realistische Verhalten von Oberflächen ist ein wichtiger Aspekt in Computer-
spielen und Filmen. Eine genaue Repräsentation von realen Materialien ist essenziell,
um ein hohes Maß an Realismus zu erzielen. Die Aufnahme oder manuelle Erzeu-
gung von solchen Oberflächen ist ein aufwendiger Prozess. Um diesen Prozess zu
verkürzen, wird eine Methode vorgestellt, die Parameter für die Bidirectional Re-
flectance Distribution Function (BRDF) automatisch mittels eines Encoder-Decoder
Convolutional Neural Networks (CNN) extrahiert. Im Gegensatz zu vorherigen
Verfahren ermittelt die vorgestellte Methode Informationen für jeden Punkt über
die ganze Oberfläche. Dies geschieht mit einer ausreichend hohen Auflösung für
reale Anwendungsfälle. Der Aufnahmeprozess benötigt nur fünf Lichtpositionen
mit einem festen Kamerastandpunkt. Dadurch kann auch ein mobiler Aufbau kon-
struiert werden und die Aufnahmedauer für eine Oberfläche ist drastisch reduziert.
Bei einem automatischen System kann diese Aufnahme in wenigen Sekunden
ausgeführt werden.

5

Acknowledgments

I would first like to thank Prof. Hendrik Lensch of the computer graphics department
at the University of Tübingen for giving me the opportunity to work on this thesis. I
also want to thank Fabian Groh for being my supervisor and providing invaluable
input throughout the whole thesis. Without the constant support of them, this thesis
would not exist.

Further, I want to thank Raphael Braun for his previous work on the light stage and
Sebastian Herholz for providing additional insights into working with Mitsuba and
rendering in general.

The computational resources support this work at the computer graphics department
at the University of Tübingen.

Lastly, I must express gratitude to my parents and my girlfriend for providing me
with support and continuous encouragement throughout my years of study and
this thesis in particular. This work would not have been possible without them.

Thank you.

7

Contents

1. Introduction 17
1.1. Problem Statement . 18
1.2. Related Research . 19

2. Background 23
2.1. Hardware . 23
2.2. Machine learning . 24

2.2.1. Single-Layer Perceptron . 24
2.2.2. Multi-Layer Perceptron . 24
2.2.3. Backpropagation . 25
2.2.4. Activation Functions . 27
2.2.5. Pooling and Stride . 29
2.2.6. Loss Functions . 29
2.2.7. Optimizer . 29
2.2.8. Convolutional Neural Networks 31
2.2.9. Generative Adversarial Networks 32

2.3. Image Synthesis . 33
2.3.1. Rendering Equation . 34
2.3.2. Bidirectional Reflectance Distribution Function 34
2.3.3. Point Light Evaluation . 37

3. Implementation 39
3.1. Camera Pose Estimation . 40
3.2. Bidirectional Reflectance Distribution Function Rendering 45
3.3. Dataset . 49

3.3.1. Augmentation . 49
3.3.2. Rendering . 50

3.4. Convolutional Neural Network . 52
3.4.1. Architecture . 52
3.4.2. Loss Formulation . 57
3.4.3. Optimization . 62
3.4.4. Results . 63

3.5. Generative Adversarial Network . 65
3.5.1. Architecture . 67
3.5.2. Loss Formulation . 68
3.5.3. Optimization . 69

9

Contents

3.5.4. Results . 70
3.6. Analysis . 72

4. Discussion 75
4.1. Conclusion . 75
4.2. Future work . 76

A. Appendix 79

10

List of Figures

1.1. The proposed BRDF estimation system. 17
1.2. Comparison of ground truth and predicted renderings. 18

2.1. Images highlighting the light stage setup. 23
2.2. Visualization of a perceptron. 25
2.3. A Multi-layer perceptron. 26
2.4. Example of different activation functions. 28
2.5. Example of CNN filters. 31
2.6. Example of a CNN encoder. 32
2.7. Microfacet visualization. 35
2.8. Example for the normal distribution function with different roughness

values. 36
2.9. Microfacet self shadowing visualization. 36
2.10. Microfacet masking visualization. 36

3.1. Abstract overview of the proposed CNN. 39
3.2. Abstract overview of the proposed GAN. 40
3.3. Example for the camera pose estimation pipeline. 42
3.4. Example for multiple highlights in the image. 43
3.5. Diagram of the reflection on the sphere. 44
3.6. Comparison between Mitsuba and the Rust implementation. 48
3.7. Example of the current rendering geometry setup. 50
3.8. The spherical coordinate system. 51
3.9. Example for different light positions and resulting images. 51
3.10. Example of a U-Net architecture. 53
3.11. Diagram of the first Multi-Input-Multi-Output-Convolutional-Neural-

Network. 54
3.12. Results of the first CNN version. 54
3.13. Comparisons for the full two-dimensional convolution network with

weight reuse. 56
3.14. Diagram of the Multi-Input-Multi-Output-Convolutional-Neural-

Network. 57
3.15. Example of ambiguity of reflective behavior with roughness and

metallic maps. 59
3.16. Difference between error from texture maps and renderings. 61
3.17. Overview of the CNN training error. 62

11

List of Figures

3.18. Percentage of well predicted samples from the CNN for an increasing
threshold. 64

3.19. Box plot for the mean error of the 26 CNN generated samples. 64
3.20. Comparison for a grainy steel material. 65
3.21. Comparisons of different materials generated by the CNN. 66
3.22. Example for an improved normal map. 67
3.23. Comparison for a leather material. 67
3.24. The mean absolute error for the pre-trained generator and the GAN

afterward. 69
3.25. The accuracy of the GAN. 70
3.26. Percentage of well predicted samples from the GAN for an increasing

threshold. 71
3.27. Comparison of the GAN predicted grainy steel material. 71
3.28. Comparisons of different materials generated by the GAN. 73
3.29. Saliency maps for different samples. 74

4.1. Example for different viewing positions. 76
4.2. Example setup for mobile scanning units. 77

12

List of Tables

3.1. Detailed final network architecture. 58
3.2. Comparison between ground truth samples and CNN predictions. . 63
3.3. Detailed discriminator architecture. 68
3.4. Comparison between ground truth samples and GAN predictions. . 70

13

Acronyms

2D two-dimensional. 41, 42, 44, 55–57

3D three-dimensional. 42–45, 55, 56, 68, 77

BRDF Bidirectional Reflectance Distribution Function. 17–21, 33, 34, 37, 39, 40, 45,
46, 52, 67, 68, 75, 77, 78

CNN Convolutional Neural Network. 18, 20, 21, 29, 31, 32, 39, 40, 70, 71

COBYLA Constrained optimization by linear approximation. 44

GAN Generative Adversarial Network. 21, 32, 33, 40, 65, 67, 68, 70, 71

GPU Graphical Processing Unit. 20

HDR High Dynamic Range. 41, 42, 52

HSV Hue Saturation Value. 49, 77

LED Light-Emitting Diode. 23, 40–44, 78

MAE Mean Absolute Error. 21, 29, 48, 53, 57, 59–61, 63, 64, 67–70, 77

MERL Mitsubishi Electric Research Laboratories. 20, 34, 45

MLP Multi-Layer Perceptron. 24, 25

MS-SSIM Multi Scale-Structural similarity. 59

MSE Mean Square Error. 29, 57, 63

PCA Principal Component Analysis. 20

ReLU Rectified Linear Unit. 27–29, 33, 53

SGD Stochastic Gradient Descent. 29, 30

SSIM Structural similarity. 59, 63

15

1. Introduction

Illuminated Samples

BRDF parameters

MetallicRoughnessNormalAlbedo

Deep autoencoder Rendered
with Environment Map

Engine/
Renderer

Figure 1.1.: The proposed BRDF estimation system. Here, several synthetic or real-world
captured samples are passed to a deep autoencoder, which predicts BRDF
samples. These samples can be used in an arbitrary game engine or renderer in
every lighting condition.

With the advance of processing power and improvements in rendering algorithms,
movies and video games approach photorealism. The 3D models of characters and
scenes are incredibly detailed, and the behavior of light is recreated realistically in
rendering algorithms. To achieve this high level of realism, objects and characters are
often based on the real world. In the past artists created all 3D models and textures
manually in a time-consuming process. With the advances in camera technology
and processing power, an increasing amount of 3D models and textures are captured
from real-world objects. This process is known as photogrammetry.

Most available photogrammetry software suits are only capable of capturing in-
formation about the height and color with the specific light condition at the time
and location of the recording. Using these textures for rendering under different
lightings leads to problems, as the texture already contains shadows and highlights.
Removing these highlights and shadows is known as delighting. Nevertheless,
delighted textures are not perfect as these only represent the color and height of an
object. Information about the reflective behavior of the object is still missing. Artists
often manually adjust the reflectivity to fit the object. However, this process requires
an experienced artist and is again time-consuming. Another approach is to capture
the object from a large number of different viewing angles and light positions. The
captured images can then be used to fit a Bidirectional Reflectance Distribution
Function (BRDF) to each pixel. As each different viewing angle needs different light
positions, this process can be time-consuming. It can be sped up by using multiple
cameras, but this increases the cost of the recordings drastically.

17

Chapter 1. Introduction

Rendered 0 Rendered 1 Rendered 2 Rendered 3

(a) Brick wall.
Rendered 0 Rendered 1 Rendered 2 Rendered 3

(b) Wood.

Figure 1.2.: Comparison of ground truth and predicted renderings. These images are taken
from the trained CNN architecture from section 3.4. The ground truth of each pair
is located on the left side and the prediction on the right side. These renderings
are created with unlearned light positions.

Artists are capable of reproducing information about reflective behavior from a few
images under different light conditions by leveraging their previous knowledge
about similar objects. Neural networks are reaching human performance in many
areas such as speech or image recognition in the recent years [45, 10, 39, 40]. In this
thesis, the possibility of training a neural network to predict BRDF parameters for
spatially varying materials from multiple input images is explored. Therefore, a
system with an encoder-decoder Convolutional Neural Network (CNN) is proposed.
A general overview of the proposed system is visible in fig. 1.1. Figure 1.2 displays
two rendered predictions compared to the ground truth materials.

1.1. Problem Statement

In recent years scanning materials for video games and movies gained importance.
Traditionally, all surfaces were created by artists in a time-consuming manual process.
In this process, reference footage is first gathered, and then the texture is created and
evaluated under several light positions. Creating the seeming randomness of real
surfaces is hard to achieve for even skilled artists. Scanning of real surfaces solves
this issue. Hardware for scanning surfaces is expensive to develop and writing
pipelines to process the scans automatically is equally labor and time intensive.
Scanning all needed materials for production requires a team and probably travel
costs. Thus, many companies use large libraries like megascans.se to solve this.

For a convincing material, a spatially varying surface is essential. The overall texture
and color of surfaces change for nearly every material at least slightly. Apart from
the general texture and color of the surface, most of them have spatially varying

18

megascans.se

1.2. Related Research

surface irregularities. These irregularities vary between larger visible and micro
irregularities. The larger ones change the surface structure visibly. The smaller ones
change the reflective behavior. Smooth surfaces have fewer imperfections and thus
provide a sharp reflection, while rough surfaces have many irregularities, and the
reflection is blurred. The structure and roughness of a surface change spatially on a
material and is not homogeneous. For example, areas of a surface are not worn-out
uniformly. Regions which are used more frequently are often smoother and contain
scratches. These irregularities are essential for a realistic appearance of surfaces.

As the spatially varying behavior is critical, the size of the output textures is essential.
An output size of at least 512×512 pixels is desirable for efficient usage.

The estimation of the BRDF parameters should be possible with few input images.
However, it is shown that estimating a full BRDF from few images is ill-posed
[25, 32, 22, 24]. Finding constraints to limit the search space is one option to solve
this. The constraint can be, for example, to limit the number of categories to only
wood or metal textures or to constrain the BRDF to an analytical model with fewer
parameters than a full BRDF.

Additionally, this work should lower the capture time for BRDFs in the light stage at
the University of Tübingen (see section 2.1). As mentioned capturing BRDFs is a
time-consuming process, and this work explores possibilities to reduce this process
by allowing recordings of materials with few captured images.

1.2. Related Research

As the capture time for a full BRDF requires a sample from every lighting angle for
every viewing angle, several methods to decrease the capture time are researched.

One possible way to achieve a faster capture time is to decrease the time to capture
individual samples. Mukaigawa et al. [26] propose a system which does not rely on
a mechanical drive for lighting changes, but still achieves a dense measurement. By
leveraging a projector with an ellipsoidal mirror, the lighting angle can be changed in
quick succession [26]. However, this method only allows capturing smaller samples
due to the size of the mirror.

By combining fast capture and sparser sampling, an additional speedup can be
achieved. For example, Dong et al. [5] design a two-phase capture setup. For the first
phase, a condenser-based optical setup allows capturing the hemisphere of outgoing
rays for a single point. This step needs to be manually performed by moving the
device slowly across the sample. The second phase captures the sample from a fixed
view position with a moving light and environment lighting. A mirror ball is used to
capture the environment lighting. In this phase, 20-200 samples are generated and
both phases a combined in the reconstruction process [5].

19

Chapter 1. Introduction

Most materials are related to each other. For example, the behavior between different
woods is not changing too drastically. The sampling can be done sparser, and data
from full scans can be used to reconstruct the dense BRDFs from few samples.
Nielsen et al. [29] perform a Principal Component Analysis (PCA) on the Mitsubishi
Electric Research Laboratories (MERL) BRDF dataset [25]. Initial random samples
are taken, and optimal sampling positions are searched by taking the knowledge of
the most influential regions from the processed BRDF dataset. With this knowledge a
reduction of the dimensionality is possible. The result of this work are non spatially
varying BRDF parameters [30, 29]. A different method of using previous captured
full BRDFs is to specify a set of fundamental materials and combine them to arbitrary
new materials. Goldman et al. [8] propose a system where sets of input images with
fixed camera angle and changing environment lights are taken. By constraining the
BRDF additionally to an analytical model, the Ward model [50], spatially varying
parameters and normal maps can be estimated. In this method, the user provides the
number of fundamental materials to combine. The optimization is performed in two
stages: The first optimizes the BRDF parameters and the second the fundamental
material mix and normal texture [8].

Aittala et al. [1] propose another method which extracts full BRDF information from
two images taken by a mobile phone. To achieve this the phone is held perpendicular
to the sample, and one picture is captured with the flash and one without. The
method extracts the diffuse and specular albedo, anisotropy information, glossiness
and the normal structure. The output is a small tile of the material with a resolution
of 192×192 pixels. To fit the parameters the whole image of the sample is split into a
grid. A single tile is selected arbitrarily and is matched to the other tiles in the grid.
As each tile is spatially distributed the half vector for each tile is different due to the
different lighting and viewing vectors. Fitting a master tile to matching tiles is only
possible for materials which conform to the assumption of stationary materials. The
definition of a stationary material is a material with a texture which repeats itself.
For more homogeneous materials this method is not generating accurate results.
The fitting itself is done in a multistage process. The first step is fitting the master
tile to every other tile by using correspondences. An initial spatially varying BRDF
is fitted to the master tile and is refined in further optimization stages.

In recent years, due to an advance in Graphical Processing Units (GPUs), neural
networks and more specifically CNNs gained popularity and are applied to various
problems. Several works leverage the learning capability of CNNs to estimate BRDF
parameters. Li et al. [21] trained a network to estimate Ward model parameters
from a single photograph. This is done in an encoder-decoder CNN with skip
connections. However, due to the especially sparse input of a single photo with
unknown lighting conditions, the network only produces spatially varying normal
and albedo parameters. The specular and roughness parameters are homogeneous
for the whole sample [21]. In a slightly different approach, Yu and Smith [51] propose
a system which works on unlabeled data. The main contribution of this paper is
a rendering framework for neural networks which is capable of backpropagating

20

1.2. Related Research

a loss. An example use case in the paper is the estimation of BRDF parameters. A
CNN is used for this task. The network receives the image of the sample, the depth
map of the scene, the view and light positions as input. The output of the network is
the non-spatially varying BRDF parameters. The parameters can then be re-rendered
by the network renderer, and the loss is calculated with the input image. The loss
then propagates through the rendering implementation and the weights of the CNN
are adjusted accordingly [51].

As the BRDF estimation can be seen as a mapping of input images to a different style
of output images, it is worth to mention the work of Isola et al. [14]. Here a general
framework for an image-to-image mapping is introduced. Isola et al. propose a
U-Net [34] based architecture for the generator network which is modified to adhere
to the guidelines of the DCGAN model by Radford et al. [31]. Additionally, a Mean
Absolute Error (MAE) loss from the generator output to the ground truth data is
introduced. This loss is added with a scaling factor to the Generative Adversarial
Network (GAN) loss. The scaling factor increases the importance of the MAE
compared to the GAN loss. This dual-loss concept is improving the feedback for the
generator network, as it would otherwise only receive strictly binary input from the
discriminator. By providing a dual loss, the training behavior stabilizes furthermore.
According to Isola et al. [14], this produces sharper and more convincing results
than with the U-Net architecture alone.

21

2. Background

This chapter provides a brief introduction of the hardware used to capture real-life
samples, machine learning, and rendering.

2.1. Hardware

(a) The main arc and the
spherical gantry.

(b) The stereo cameras on
the motorized camera
arc.

(c) The turntable.

Figure 2.1.: Images highlighting the light stage setup.

The light stage is a spherical gantry consisting of 196 Light-Emitting Diode (LED)
boards. It is about two meters in diameter. It features a vertical arc, called the main
arc, which consists of 55 LED boards, and it is thus capable of producing the highest
resolution in lighting angles. The main arc is pictured in fig. 2.1a. The remaining
boards are distributed on the sphere. Each LED board contains 15 LEDs with different
wavelengths. The brightest LED is emitting white light and can be considered the
main LED.

In the center of the sphere is a motorized turntable, which can rotate a sample 360
degrees. This turntable is shown in fig. 2.1c.

Two cameras are positioned on a motorized arc near the main arc. Figure 2.1b
displays the cameras on the motorized arc. The arc is fixed to the gantry, and the

23

Chapter 2. Background

cameras can be positioned freely between a horizontal and perpendicular position
to the turntable surface.

2.2. Machine learning

The area of machine learning focuses on the design of algorithms that enable a
computer to learn from data instead of relying on a hard-coded set of manually
implemented rules.

2.2.1. Single-Layer Perceptron

The perceptron is an algorithm for a binary classifier. This means it maps a vector x
with x ∈Rd to an output value f (x) which is a single binary value. This is expressed
as:

f (x) =

1 if w ·x + b > 0
0 otherwise

2.1

Where w is a weights vector with w ∈Rd, w ·x is the dot product over the content of
the vector

∑d
i=1 wixi and b represents a bias offset with b ∈R. The bias is used to shift

the decision in a specific direction away from the origin. The binary output function
is known as the Heaviside function [35].

By including the bias in the weight vector w := (b,w1, ...,wd)ᵀ and adding a 1 to the
input vector x := (1,x1, ...,xd)ᵀ the calculation can be reduced to a single dot product
w ·x.

2.2.2. Multi-Layer Perceptron

Regarding the Multi-Layer Perceptron (MLP) the perceptron model allows the output
of more than one value. Additionally, different activations beside the Heaviside
function are introduced. This allows for the MLP to express more complex problems
than the linear decision of the single-layer perceptron. Thus, the perceptron is defined
as:

y = f (w ·x) 2.2

Where y ∈Rm is the output of the perceptron, w ∈Rn×m is the weight vector with
added bias, x ∈ Rn is the input vector with an added one and f is the activation
function. In section 2.2.2 this concept is visualized [36].

24

2.2. Machine learning

x2 w2 Σ f

Activation
function

y
Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.2.: Visualization of a perceptron.

The perceptron can be chained with two other perceptrons to form a MLP in the
following way:

y = f1(w1 · f2(w2 ·x)) 2.3

If a layer neither receives the network input nor is the final output layer, it is referred
to as a hidden layer. The MLP consists of at least three layers. In most deep learning
frameworks this is called a fully connected layer due to the connection of each output
to every input in the dense weight matrix. Figure 2.3 illustrates this connection. Each
circle in this diagram represents a perceptron (see section 2.2.2).

2.2.3. Backpropagation

As modern network architecture can contain millions of weights, these parameters wi
need to be set efficiently. The output of the network y is compared to the desired value
ŷ by a loss function E. This error between the desired value and actual output can be
contributed to a single weight wi using the partial derivative ∂E

∂wi
. This expresses the

amount of change needed for a specific weight to lower the error.

As this needs to be performed for all weights in the network, a technique, called
backpropagation, developed by Rumelhart et al. [37] is used. First, the network is
evaluated in a forward pass. An input x is passed through all neurons and weights
to calculate the output of the network y. The error is then computed using a loss
function which is expressible as an average of error functions E = 1

n
∑n

x Ex. This
enables a gradient calculation after each evaluated training sample. The loss is
then propagated from the output through the network. This is done using partial
derivatives and repeatedly applying the chain rule of calculus. After this step, each
neuron has an error value which represents its contribution to the network output
[37].

25

Chapter 2. Background

Input
layer

Hidden
layer

Output
layer

x1

x2

x3

x4

x5

Ouput

Figure 2.3.: A Multi-layer perceptron.

A simple example explains this process. The error function and the output is defined
as:

E =
1
2

(y− ŷ)2

y = ϕ (wx + b︸︷︷︸
:=a

) 2.4

where ϕ is the sigmoid function. The sigmoid function has a particular simple
derivative: sig′(t) = sig(t)(1− sig(t)).

It is assumed that only one weight w = 1 exists, the bias is set to b = −3, and that the
input is x = 3 and the desired value is ŷ = 1. The forward pass results in y = 1

2 and
a = 0.

26

2.2. Machine learning

∂E
∂y

= y− ŷ

=
1
2
−1 = −

1
2

∂E
∂a

=
∂E
∂y

∂y
∂a

=
∂E
∂y

y (1− y)

= −
1
2

1
2

(
1−

1
2

)
= −

1
8

∂E
∂w

=
∂E
∂a

∂a
∂w

=
∂E
∂a

x

= −
1
8

3 = −
3
8

∂E
∂b

=
∂E
∂a

∂a
∂b

=
∂E
∂a

1

= −
1
8

2.5

The values ∂E
∂w and ∂E

∂b can now be used by various gradient optimizer methods
described in section 2.2.7.

2.2.4. Activation Functions

An activation function is responsible for mapping the output of the dot product from
the input and weights to a new output value (see section 2.2.1). A simple activation
function, the Heaviside step function, is already introduced in eq. 2.1.

An essential element of these functions is that they need to be nonlinear. If a linear
function is used, this will result in a linear combination of every input. Thus, the
network can be simplified to just a single neuron. By using a nonlinear function, a
neuron cannot be linearly combined with another neuron, and the final output is
dependent on every neuron.

Commonly used functions are Sigmoid, ReLU and the leaky ReLU. They are defined
as followed:

27

Chapter 2. Background

(a) Sigmoid (b) Rectified Linear Unit
(ReLU) (c) Leaky ReLU with α = 0.1

Figure 2.4.: Example of different activation functions. The blue dashed lines represent the
derivative and the black line is the evaluated function.

Sigmoid function - see fig. 2.4a

f (x) =
1

1 + e−x

f ′(x) = f (x) (1− f (x))
2.6

The sigmoid function was one of the earliest and for a long-term widely used
activation functions. This is due to its simple derivation and general properties.
However, the sigmoid function tapers off for large absolute values. The gradient
of these values is weak. This is referred to as the vanishing gradients problem. The
learning progress for large values is slow due to the small changes in the gradient.
The tangens hyperbolicus is a similar function to the sigmoid function with nearly the
same properties. It can even be expressed as a scaled sigmoid tanh(x) = 2sig(2x)−1.
The output range is between −1 and 1.

ReLU - see fig. 2.4b
f (x) = argmax

0
x

f ′(x) =

1 if x > 0
0 if x < 0

2.7

Recently the ReLU function became a popular activation function. As the function
is linear for positive values, the gradient is constant in these areas. The constant
gradient prevents a slow-down in training. Thus the vanishing gradients problem
is avoided. Negative values result in the gradient and output being zero [27]. This
is desirable because the activations in the network are sparse. However, this can
lead to a problem of dead neurons. Dead neurons are neurons which only calculate
negative outputs and thus only produce output with the value zero. The neuron is
not learning and not contributing to the network.

28

2.2. Machine learning

Leaky ReLU - see fig. 2.4c

f (x) =

x if x > 0
αx otherwise, α = 0.01

f ′(x) =

1 if x > 0
α if x < 0

2.8

The leaky ReLU technique is a possible solution for the dead neuron problem. As a
small slope exists for negative values, a gradient exists. Neurons cannot die because
of this change [23]. For the α parameter different values can be used. Applying
different α values is often referred to as a parametric leaky ReLU. Commonly a value
of 0.01 is used for leaky ReLUs.

2.2.5. Pooling and Stride

It is common to decrease the width and height dimensions in networks to compress
an input in several stages. One way to achieve this is a max pooling operation.
For max pooling, a window is moved spatially across the output of a layer. The
maximum value is the only value used as the output of the operation. As only one
value is used as the output from the window, this reduces the spatial dimensions by
the size of the max pool kernel. For example, a kernel of size two is decreasing the
resolution by half. For a CNN a possible variation is to move the convolution filter
with a stride. This reduces the resolution, too. It is found that this produces results
equal to a max pooling operation, but with increased performance and training
speed [43].

2.2.6. Loss Functions

As previously mentioned in section 2.2.3 the error functions need to be expressible
as an average of summed error functions: E = 1

n
∑n

x Ex. This work focuses on image
generation. Common approaches to calculate an image metric are the Mean Square
Error (MSE) and MAE. The MSE is defined as E(x) = (x− x̂)2 and the MAE as
E(x) = |x− x̂|, where x is the predicted value and x̂ is the actual value. These errors
can be expressed as a sum of error functions and are usable as a loss function.

2.2.7. Optimizer

The Stochastic Gradient Descent (SGD) algorithm can be seen as a group of algorithms.
Their general concept is to provide a method to calculate the gradient on smaller
batches, rather than the whole dataset. These batches are called mini-batches. This is

29

Chapter 2. Background

especially useful in the area of machine learning as the datasets are large and cannot
be stored in memory.

The SGD algorithm generally converges to a global minimum for a convex cost
function, and a local minimum is found at least in most cases [2].

However, as steep gradients exist in several functions, finding a minimum can be
difficult. Even small step sizes can result in oscillations. Therefore, several concepts
are researched to circumvent this.

One of the first concepts, the momentum method is introduced by Rosenblatt and
Malsburg [36]. The concept is to take previous gradients into account. If a gradient
points in the same direction as previously, an accelerated step size can be used. If a
gradient changes its direction, the step size should be dampened [36]. This leads to
a faster convergence and less oscillation. The method is defined as followed:

∆wi+1 = −ηOE(wi) +αwi

wi+1 = wi +∆wi+1 2.9

Where ∆w is the weight update vector, η is the learning rate or step size and α ∈ [0,1)
is the exponential decay rate [36].

Kingma and Ba [17] proposed the Adam optimizer which extends the concept
of momentum. The Adam optimizer provides an adaptive learning rate for each
parameter.

For this, the exponential decaying average of past gradients

mi+1 = β1mi + (1−β1)OE(wi) 2.10

and the exponential decaying average of past squared gradients

vi+1 = β2vi + (1−β2)(OE(wi))2 2.11

are stored.

The parameters β1, β2 ∈ [0,1] represent the exponential decay rates for the first and
second moment respectively and η represents the learning rate.

The weights are updated as followed:

wi+1 = wi−
η

√
vi+1 +ε

mi+1 2.12

where ε is a configurable parameter to counter division by zero [17].

30

2.2. Machine learning

2.2.8. Convolutional Neural Networks

CNNs are a form of neural networks which are particularly suitable for visual-based
learning tasks [41, 18, 45, 11]. This is due to the convolution operation being used as
a shape detection method. Therefore, various filters are created. The values of the
filters are learned as weights by the network. By applying the filters to a specific
pixel and its surrounding pixels, an output strength for the activation function can
be calculated. The filter is then slid over the input with a stride size [20]. An example
for this is visualized in fig. 2.5. The filter element in the middle is applied to all valid
elements on the left. This means the filter cannot be applied to the outer border of
the input. Elements on the border are thus ignored and not visible in the result on
the right. The output on the right is also referred to as an activation map.

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

1 0 1
0 1 0
1 0 1

4 3 4
2 4 3
2 3 4

Figure 2.5.: Example of CNN filters. On the left is the exemplary image. The filter operation
in the middle is performed with a stride of 1 and only on valid pixels. The result
of this operation is on the right highlighted in red.

The output size w′×h′ of an input w×h, with w defining the width and h the height,
is determined by the size of the stride and the selected padding method.

Several of these filters are created in each convolution layer. The values for the filter
kernel are learned by the network and are called weights. Most CNNs decrease the
size of the image in each layer with either strides or max pooling (section 2.2.5). With
this method, different scales of features and shapes are learned.

By combining several layers with pooling operations, architectures such as auto
encoders are created. In this encoder, a network compresses the input to a very
sparse representation. An example is provided in fig. 2.6.

The input marked as red receives a 16x16 RGB image. Four convolutions are applied
with a stride or max pooling of size 2. This halves the resolution in each layer. The last
layer only consists of 512 outputs. By applying a fully connected layer (section 2.2.2)
an output (in fig. 2.6 marked in blue) with only two classes is calculated. This is
applied to multiple tasks. For example, this can be used to distinguish if an image
contains a cat or dog. Another popular task is to read handwritten numbers [20].
Here, the last layer consists of ten outputs. One for each number. The highest value
in the output corresponds to the detected number.

When a stride or a max pooling is applied after a convolution, it can be visualized as
a downsampling operation. The information is condensed. The inverse operation

31

Chapter 2. Background

16x16x3 8x8x64

4x
4x

12
8

2x
2x

25
6

1x
1x

51
2

1x1x2

Figure 2.6.: Example of a CNN encoder.

is called a transposed convolution or often wrongly named deconvolution. A
deconvolution is defined in the area of signal processing, and the transposed
convolution performs a different operation. A convolution applies a kernel on the
input, and the result is the output of the used filter. The transposed convolution
reverses this concept. This can be done by swapping the forward and backward pass
of a convolution layer (see section 2.2.3).

Finally, the concept of skip connections is an important concept in many network
architectures. The skip connection appends the output of one CNN layer, referred to
l1, to the output of another layer, l2. Here, the output size of both layers needs to be
identical. For example, for a w×h× c output the width w and height h dimensions
need to match. The following layer of l2 now filters over the joined input of l1 and l2.
This can be helpful for larger networks, as information can flow more freely through
the network.

2.2.9. Generative Adversarial Networks

One recently popular concept is GANs. They were introduced by Goodfellow et al.
[9]. The general concept is that two networks learn in parallel and against each other.
One network, the generator, tries to create convincing outputs. The other network,
the discriminator, tries to learn if an image is from the ground truth set or if it is a
generated one. As both networks learn at the same time, the discriminator tries to

32

2.3. Image Synthesis

achieve a better classification rate and the generator optimizes to generate better
outputs. Thus, both networks learn in a competition to improve in their respective
tasks. The discriminator network can be thought about as a complex loss formulation
which gets trained in conjunction with the network. The training is converged if the
discriminator is unable to classify the ground truth and predictions reliable. More
specific, the classification rate achieves only 50% accuracy. The GAN loss is defined
as:

min
G

max
D

L(D,G) = Ex∼pdata(x)
[
logD(x)

]
+Ex∼pz(z)

[
log(1−D(G(z)))

]
2.13

The general concept behind eq. 2.13 is that the loss formulation is based on the
cross-entropy loss:

L(p,q) = −
∑

i

pi logqi 2.14

Where p represents a true distribution and q denotes an estimated distribution.

Several additions to this concept are researched recently. One of them is the concept
of conditional GANs (cGAN) [9]. Here the discriminator not only learns whether the
output is from the ground truth data, but whether the output is viable for the input.
This is done by passing the discriminator network pairs of input and output images.

Radford et al. [31] introduced a set of rules for the generator network to stabilize the
learning process for GANs. This architecture is called Deep Convolutional Generative
Adversarial Network (DCGAN). The generator and discriminator networks are
based on convolution layers. The other guidelines are:

1. Only used strides instead of pooling operations

2. Apply batch normalization in the generator and discriminator

3. ReLU activation function in all layers of the generator except the output which
uses tanh

4. Leaky ReLU in all layers of the discriminator

Additionally, Radford et al. [31] propose the use of the Adam optimizer with a
learning rate of 2e−4 and a β1 of 0.5 to stabilize the training.

2.3. Image Synthesis

One of the central concepts of computer-guided image synthesis is rendering. Here
a brief overview of the rendering equation, BRDFs, the analytical Cook-Torrance
BRDF model and the evaluation of physically based point light sources is discussed.

33

Chapter 2. Background

2.3.1. Rendering Equation

Kajiya [16] defines the rendering equation as:

Lo(x,ωo) = Le(x,ωo) +

∫
Ω

fr(x,ωi,ωo)Li(x,ωi)(ωi ·n)dωi 2.15

Where Lo is the total out-going radiance for the point x with the direction ωo, Le is the
emitted radiance, and Li is the incoming radiance at the location x with the negative
incoming light direction ωi. The fr term describes the BRDF. Lastly, the (ωi ·n) is the
cosine of the incident angle, which acts as the weakening factor for the incoming
light. This is a consequence of light being distributed over a small area when it hits
the surface perpendicular and over a larger area for non-perpendicular angles.

2.3.2. Bidirectional Reflectance Distribution Function

The BRDF represents the reflection behavior of surfaces under arbitrary incident and
out-going angles. The BRDF can range from its purest four-dimensional form to a
higher multi-dimensional function. The four-dimensional form of a BRDF is defined
only for all incident and outgoing angles. This can be extended to, for example,
six dimensions by adding spatial variance over the surface of the sample. Other
extensions are the wavelength of the light or the time.

The BRDF is defined as the ratio between the reflected radiance Lr in direction ωr
and the incoming radiance Li from direction ωi [28]. This is expressed as:

fr(x,ωi,ωo) =
dLr(ωo)

Li(ωi)cos(ωi ·n)dωi
2.16

To achieve energy conservation the following equation applies:∫
Ω

fr(x,ωi,ωo)(ωi ·n)d ≤ 1 2.17

Measuring, storing and evaluating BRDFs is complex. In theory, a measurement for
every possible viewing and lighting angle needs to be taken. In case of a spatially
varying BRDF, the values for each point on the surface need to be stored. When
the material is then, for example, rendered by ray tracing, the renderer needs to
look up the stored value for the ray’s incident and reflection angle. The time to
capture a BRDF is therefore quite long. For example, the acquisition time for a single
sample from the MERL dataset takes three hours [25]. The amount of data stored to
represent one sample is significant. For the MERL dataset, a single sample takes 330
high dynamic range images, which are combined from 18 10-bit images [25]. Thus,

34

2.3. Image Synthesis

many analytical models have been proposed which reduce the file sizes for each
material.

A popular model for approximating the behavior of specular highlights is the
Cook-Torrance microfacet model [4]. The general concept behind this model is to
describe microstructures in a statistical process, which is driven by a roughness
parameter. This parameter describes how many microfacet normals are aligned with
the surface normal. The microfacets itself are approximated as a small perfect mirror.
For perfectly smooth surfaces the reflection of a light source is visible as a sharp image
of the light source. All microfacets are aligned with the surface normal. However,
most objects are not perfect mirrors and have tiny imperfections on the surface.
The resulting reflection is blurred. The microfacet normals are now distributed
around the surface normal. For example, fig. 2.7 visualizes these imperfections and
highlights the microfacet normals h.

ωi
ωo

h
ωi

ωo

h

Figure 2.7.: Microfacet visualization. The vector h is the half vector between ωi and ωo. It is
additionally the microfacet normal in this case. If the half vector is aligned with
the microfacet normal a reflection is visible.

In general, a highlight is achieved when the half vector between the incident and the
outgoing ray is aligned with the surface normal. A material with a small roughness
value has a narrow normal distribution function. Most of the microfacet normals
align with the surface normal. A rough material has a large roughness value, and the
normal distribution function is broad. The microfacet normals are scattered around
the surface normal direction. Thus, only some of the light rays are reflected back to
the eye. This cause highlights to blur and produce a less sharp highlight.

The Cook-Torrance microfacet is defined as:

kspec =
D(α,ωi,ωo,n)F(ωi,ωo)G(α,ωi,ωo,n)

4(ωo ·n)(n ·ωi)
2.18

Where D is the normal distribution function, F is the Fresnel term, G is the geometric
attenuation term, and α is the roughness parameter.

The normal distribution function describes how many of the microfacet normals
are facing in the current half vector direction. Therefore, this function defines the
shape and size of the highlight. Figure 2.8 visualizes the behavior of the normal
distribution function with different roughness values.

35

Chapter 2. Background

Figure 2.8.: Example for the normal distribution function with different roughness values.
The variable a represents α here.

The Fresnel term represents the amount of light that is reflected rather than refracted
for a given material.

Figure 2.9.: Microfacet shadowing visualization. Incoming arrows represent light rays and
outgoing arrows represent the reflected light. Some facets produce a shadow.

Figure 2.10.: Microfacet masking visualization. Incoming arrows represent light rays and
outgoing arrows represent the reflected light. Some facets block the reflected
rays.

Lastly, the geometric attenuation preserves the energy conservation. Due to the
microfacets, some areas are self-occluded. This is visualized in fig. 2.9 and is referred
to as shadowing. Additionally, some areas are not visible from the view direction.
This is visualized in fig. 2.10 and is referred to as masking.

Several functions and approximations can be used to describe the normal distribution
function, Fresnel term, and geometric attenuation function. In section 3.2 the choice
for each of these functions is explained in more detail.

36

2.3. Image Synthesis

The original formulation of the Cook-Torrance microfacet model only describes the
specular reflectance lobe of the BRDF. However, an extension is also mentioned
which adds a diffuse component [4].

kdiff =
1
π

cdiff 2.19

In eq. 2.19 cdiff is the RGB value of a single pixel from the diffuse color map, which
has a range between 0 and 1.

A more complex model is the diffuse term of the Disney BRDF [3]. This term takes
into account that rougher materials are often slightly darker than smoother ones. It
is defined as:

kdiff =
cdiff

π
(1 + (FD90−1)(1− cosθl)5)(1 + (FD90−1)(1− cosθv)5) 2.20

with FD90 = 0.5 + 2cosθ2
dα

In eq. 3.7 cdiff is the RGB value of a single pixel from the diffuse color map,α represents
the roughness value with range 0 to 1, θl and θv are the angles of incidence for the
light and view ray, respectively, and θd is the difference between the angle of the
light and the half vector. The half vector is defined as h = l+v

‖l+v‖ .

The specular and diffuse terms are combined in eq. 2.21.

fr = (kdi f f + kspec) 2.21

2.3.3. Point Light Evaluation

A point light is the most straightforward definition of a light source. The point light
source is defined by a single point in space and an intensity value Ie. It emits the
same amount of light in every direction.

As the parametrization of the point light source uses the radiant intensity as the unit,
it needs to be converted to radiance unit to be used in the rendering equation. This
conversion is done by dividing with the squared distance from the light source at
the position y to the point x on the surface.

The light source is thus defined as:

Li =
Ie∥∥∥y−x

∥∥∥2 2.22

37

3. Implementation

This section covers the first steps toward the usage of real-world acquired samples
with the light stage in section 3.1. Additionally, the implementation details for the
BRDF model described in section 2.3 are discussed in section 3.2 and the dataset for
the neural network is described in section 3.3.

Furthermore, two neural network versions are proposed in section 3.4 and section 3.5.

BRDF parameters

MetallicRoughnessNormalAlbedo

Offline
Renderer

Rendered
with Environment Map

Engine/
Renderer

Loss

Differentiable
RendererLoss

Ground Truth

Deep autoencoder

Illuminated Samples

Figure 3.1.: Abstract overview of the proposed CNN.

The first version is an encoder-decoder CNN. An abstract overview is visualized
in fig. 3.1. The specific details are described in section 3.4. As the proposed system
is currently evaluated on a synthetic dataset, the samples are first rendered offline.
The illuminated samples are then passed to the encoder-decoder CNN. The BRDF
parameters for the Cook-Torrance model described in section 3.2 are then predicted.
The predicted parameters are compared to the ground truth dataset samples. Addi-

39

Chapter 3. Implementation

tionally, the samples are rendered with a differentiable renderer and compared to
the illuminated input samples. By using a differentiable renderer, the error from this
comparison can be propagated back to the network. Finally, the predicted parameters
can be used in an arbitrary engine or renderer under any lighting condition.

BRDF parameters

MetallicRoughnessNormalAlbedo

Descriminator

Rendered
with Environment Map

Engine/
Renderer

Loss

Loss

Offline
Renderer

Differentiable
RendererLoss

Ground Truth

Deep autoencoder

Illuminated Samples

Figure 3.2.: Abstract overview of the proposed GAN.

The proposed CNN version is now extended to a GAN. Figure 3.2 provides an
abstract overview. Detailed information are described in section 3.5. The general
concept is identical to the CNN version. However, in fig. 3.2 the dashed line indicates
the extension of the discriminator network. This discriminator network is trained to
evaluate if a prediction is possible given the network input. This decision is added
as an additional loss. Section 3.5.2 describes the exact definition of the loss.

3.1. Camera Pose Estimation

As a BRDF describes the behavior of a surface for different viewing angles, reflection
angles and wavelengths, information about the camera pose, lighting position and
light wavelengths are required. To simplify the BRDF estimation only white LEDs are
used in the light stage (section 2.1). The LED positions are known, and the cameras
are calibrated. The remaining unknown component is the camera pose in the LED
coordinate system.

40

3.1. Camera Pose Estimation

The camera pose can either be measured by an external device or estimated by
using available information in the camera frame. External measurement requires
additional hardware, and the resulting position would be in an own coordinate
system. However, this would require alignment with the LED coordinate system.
Another method is using markers on the gantry of the light stage. But as the sample is
often lit with just one LED, the camera needs a wide aperture to maximize gathered
light. This results in the background, where the LEDs are located, to be blurred.
Tracking out of focus markers is error-prone, and thus this method is not feasible
as well. Instead of markers, the visible, active LEDs in the frame can be used to
estimate the camera pose. As white LEDs are behind a small diffusion lens, the
visible highlights of the active LEDs are large. By capturing High Dynamic Range
(HDR) images, the highlights of the lit LED are not blown out, and a brighter center
is visible. This center is used for the position estimation.

By using following equation, sub-pixel accuracy is achieved:

ω =

n∑
x

m∑
y

px,y 3.1

c =

∑n
x
∑m

y

(
x
y

)
px,y

ω
3.2

In eq. 3.1 ω is the summed weight for each pixel coordinate x, y and its value px,y.
The two-dimensional (2D) center position is calculated in eq. 3.2, where c is the
center, x, y are the pixel coordinates of the n x m sized frame and px,y is the pixel
value again.

To automate this process, the highlights can be extracted automatically. When only a
single LED is active and visible in the image, the brightness difference to all other
visible elements in the frame is large. Binary thresholding can be applied with
an empirically selected threshold value. The resulting thresholded image is then
cleaned up with an erosion operation followed by a dilation. The resulting image is
now sparse, and a labeling algorithm is executed to extract all active elements of
the thresholding. The center of each label can now be calculated with eq. 3.2. This
process is visualized in fig. 3.3.

With three well-distributed correspondences, a Perspective-n-Point algorithm can be
used to estimate the camera pose. OpenCV implements such an algorithm 1. However,
the camera is configured with a smaller field of view (see the leftmost image in fig. 3.3)
because this maximizes the size the sample covers in the frame. As a consequence,
only a few LEDs are visible in the image. Additionally, the distribution of these visible

1 https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_
reconstruction.html

41

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

Chapter 3. Implementation

x

Threshold Erode Dilate Center
calculation

as HDR

Figure 3.3.: Example for the camera pose estimation pipeline.

LEDs is just in a line. A robust position estimation requires spatially distributed
correspondences. Thus, a Perspective-n-Point algorithm cannot be applied directly.
To bypass this problem an additional step is introduced. A sphere with a known
radius is placed at the sample location. Single LEDs which produce a visible reflection
from the camera perspective are activated, and HDR images are captured. Afterward,
the center is calculated with the method described previously.

Sometimes additional reflections are visible in the background on reflective elements
(see fig. 3.4). The unwanted reflections are not visible in every image, and the location
of them are scattered in the frame. By gathering all visible reflection center locations
from all images, a true center is calculated. A median is calculated for every reflection
coordinate in the x and y-axis independently. With sufficiently many captured images
this corresponds to the center of the sphere. The distance between the sphere center
and each visible reflection in every image is calculated, and only the reflection with
the closest distance is considered. All other reflections are disregarded.

The next step is to fit the visible reflections on a simplified three-dimensional (3D)
model of the Lightstage. The known parameters are:

• The sphere radius

• The 3D LED location

• The visible 2D reflection points on the sphere

The missing parameters are:

• The camera position (3D vector)

• The camera rotation (represented as 3D Euler angles vector)

42

3.1. Camera Pose Estimation

Figure 3.4.: Example for multiple highlights in the image. After the thresholding operation a
second highlight is still present. The lower right highlight is the wanted highlight
and the one highlighted above is an unwanted.

• The sphere position (3D vector)

Additionally, a model needs to be established which sets all parameters in relation.
The result is a nonlinear equation with nine unknown parameters. The model
calculates an error, and this error is minimized, which is known as optimization.
This is done numerically by Ceres 2. The Ceres solver is a nonlinear optimization
library with support for unconstrained and bound constraint optimization.

A previously unmentioned parameter is the 3D reflection on the sphere. This
parameter is estimated in a separate optimization step inside the Ceres optimization.
The reflections on the sphere are highly specular, and the center is treated as a perfect
mirror between the view direction and the LED position. Additionally, the sphere is
treated as a level surface at the point of the reflection.

Figure 3.5 illustrates the model. The reflection half vector H(~ωi, ~ωo) is calculated as
followed:

H(~ωi, ~ωo) =
~ωi + ~ωo∥∥∥ ~ωi + ~ωo

∥∥∥ 3.3

When a perfect reflection is occurring the surface normal is equal to the half vector
H(~ωi, ~ωo). To calculate the surface normal, the reflection point ~p and the sphere center

2http://ceres-solver.org/

43

http://ceres-solver.org/

Chapter 3. Implementation

Lamp Camera

~ωi ~ωoH(~ωi, ~ωo)

Figure 3.5.: Diagram of the reflection on the sphere.

~c is used as followed:

~n =
~p−~c∥∥∥~p−~c∥∥∥ 3.4

This leads to the first constraint of the optimization: H(~ωi, ~ωo) = ~n.

A second constraint is that the reflection needs to be on the surface of the sphere.
For every point (x0, y0) the equation (x0− cx)2 + (y0− cy)2 = r2 applies. With (cx, cy)
representing the circle center in x- and y-axis and r representing the radius.

Constraint optimization is a specific optimization problem and is solved here
with nlopt 3 and the Constrained optimization by linear approximation (COBYLA)
algorithm [15]. The nlopt library is a nonlinear optimization library which implements
a large number of different algorithms and is callable from various languages such
a C, C++, Julia and Matlab. Ceres is not used for the sphere position estimation
because, at the time of writing, it does not support equality constraint optimization.
The nlopt library, on the other hand, supports equality constraint optimization with
the COBYLA algorithm.

It is worth mentioning that the above optimization is executed in 2D, but the camera
pose needs to be optimized in three dimensions. As the reflection has to be on a
plane with the camera and the light, all coordinates can be projected on this plane.
When the resulting plane is then transformed on an axis in the coordinate system of
the LEDs, one coordinate can be discarded. As the plane and the transformation to
the axis is known, the reflection can then be projected back to 3D.

The resulting 3D point is then transformed to 2D coordinates by the known intrinsic of
the calibrated camera. The difference between the real recorded reflection coordinates
and the estimated coordinates is calculated and used as the error in Ceres. Ceres

3https://nlopt.readthedocs.io/en/latest/

44

https://nlopt.readthedocs.io/en/latest/

3.2. Bidirectional Reflectance Distribution Function Rendering

then minimizes the error by altering the unknown parameters (Camera position,
rotation, sphere position).

With sufficiently many images containing reflections distributed on the visible
surface of the sphere, the optimization results in a stable and accurate position.

3.2. Bidirectional Reflectance Distribution Function
Rendering

In this section, the specific implementation details are discussed. In section 2.3 the
Cook-Torrance model is described. However, the exact definition of the required
normal distribution function, Fresnel term, and geometric attenuation function is
left for this section. Furthermore, the exact details of the rendering implementation
are presented here.

BRDF implementation details
The concept of Cook-Torrence microfacet model is introduced in section 2.3.2. The
specific implementations for the normal distribution function, Fresnel term, and geo-
metric attenuation are discussed in this section. To achieve a quick evaluation of the
BRDF, common approximations for these functions are selected. The implementation
is based on the Frostbite Engine [19].

As mentioned in section 1.1, this project aims to allow BRDF parameter estimation
from input images with a neural network. To achieve this, the number of different
materials is limited. As a limitation, only isotropic materials are estimated. Addi-
tionally, the choice of using the Cook-Torrance model is inherently a limitation, as
the possible parameters compared to a full recorded BRDF like the MERL dataset
are drastically limited [25].

The samples gathered from several resources for the dataset in section 3.3 are defined
with the following parameters:

b - Base color: RGB - Values: [0−1]

n - Normal: 3D scalar - Values: [0−1]

r - Roughness: Scalar - Value: [0−1]

m - Metallic: Scalar - Value: [0−1]

The base color map represents the general color of an object without lighting
information. The normal map encodes small surface normals in an image by
mapping a normal vector (XYZ) to RGB values in an image. As an 8-Bit RGB image
cannot capture the negative values, the value n is scaled by 2n−1. The roughness
map approximates even smaller scale surface irregularities. In the grayscaled map a

45

Chapter 3. Implementation

value of 1 is a rough surface, and 0 is a perfect mirror surface. This information is
used in eq. 2.18 and results in smoother, diffuse highlights for a rough surface and
sharp, perfect reflections for a smooth surface. The metallic map is used to determine
the specular and diffuse color. Ideally, only 0 or 1 is used as a value for the metallic
map, but sometimes values in between are necessary to express coated or rusted
metals.

The roughness value is reparametrized as α = r2. This perceptually linearizes the
roughness value [3].

In this definition, the base color map is not technically a diffuse color representation
but a mix of the diffuse color for non-metallic objects and the Fresnel reflectance
at normal incidence (f0). The metallic map is used as a mask to determine which
areas are metallic or non-metallic. This definition is often referred to as a base color
texture map.

For non-metallic materials a base specularity is assumed. Often, a value of 0.04 or 4%
reflectivity is assumed. The diffuse color cdiff and specular color cspec is then defined
as:

cdiff = (1−m)b 3.5
cspec = (1−m)0.04 + mb 3.6

The diffuse term is defined as:

kdiff =
e f sl sv (n ·ωi)cdiff

π
3.7

eb = 0.5α

e f = (1−α) +α
1

1.51
FD90(ωo,h) = eb + 2(ωo ·h)2α

sl = (1− (1−n ·ωi)5) + (1−n ·ωi)5FD90

sv = (1− (1−n ·ωo)5) + (1−n ·ωo)5FD90

This implementation contains a renormalization term which prevents the diffuse
term to exceed 1. This can occur due to the Disney BRDF lacking energy conservation
[19]. According to Burley, this is an intentional design choice. With this choice, artists
can use the same diffuse color across all roughness values. The e f variable defined in
eq. 3.7 is responsible for the conversation of energy [19]. The scaling factor 1

1.51 is due
to the peak value of 1.5 in the Disney BRDF. The sl and sv variables are the Schlick
approximation of the Fresnel term for the light and view direction, respectively [19].

46

3.2. Bidirectional Reflectance Distribution Function Rendering

For the specularity, the Cook-Torrance model from eq. 2.18 is used. For the Fresnel
term F the Schlick approximation [38] is used:

f90 = argmax
1

argmin
0

(cspec · ~0.33333)
0.02

F(ωi,h) = (1− (1−ωi ·h)5)cspec + (1−ωi ·h)5 f90 3.8

In this equation, h refers to the half vector between ωi and ωo. Furthermore ~0.33333
describes a three-dimensional vector with all elements being 0.33333. The definition
of f90 contains an assumption from Engel [7, chap. 2.5] that no real-world material
has a f0 value lower than 0.02. It is assumed that values lower than this value are due
to micro-occlusions, and thus the Fresnel value is gradually lowered [7, 19]. These
micro-occlusions can be encoded in the specular value by artists. As no material in
the dataset (see section 3.3) contain such values the term could be removed. However,
as the dataset contains a large range of different materials from different artists and
is intended to be extended, it is not removed.

For the normal distribution function, the GGX distribution function is used [47]. It is
defined as:

D(~n,h,α) =
α2

π(((~n ·h)α2− (~n ·h)) (n ·h) + 1)2
3.9

Lastly, the height correlated smith version for the geometric attenuation function is
selected [12]. According to Heitz, this is a correct approximation of microsurfaces, as
it takes the height of the microfacets into account. It is defined as:

G(ωi,ωo,~n) =
gv + gl

2
3.10

gv = ~n ·ωi

√
(− (~n ·ωo) α2 + (~n ·ωo)) (~n ·ωo) +α2

gl = ~n ·ωo

√
(− (~n ·ωi) α2 + (~n ·ωi)) (~n ·ωi) +α2

It is worth noting that this definition is a reformulation of the original definition
of Heitz. This definition already contains the denominator for the Cook-Torrance
equation eq. 2.18. Combining eq. 3.8, eq. 3.10 and eq. 3.9 results in kspec:

kspec = FGD 3.11

47

Chapter 3. Implementation

Renderer
The implementation of the online training/validation data rendering is done in Rust4.
Rust can expose a C interface which can be accessed by Python and most other
languages. This implementation is referred to as the Rust renderer.

The output of the renderer implementation is tested against the Mitsuba renderer.
However, the Mitsuba renderer does not support the metallic model natively but
supports rough conductors and a rough plastic model. These are comparable to
metallic and non-metallic surfaces in the Rust renderer, respectively. Both models are
then blended using the Blendmap plugin and the metallic map as the blend texture.
For the rough plastic model, an interior index of refraction of 1.50043 is chosen as
this represents the 4% base reflectivity of the above-described model. In fig. 3.6
the difference between the Mitsuba renderer and the Rust renderer are compared.
Several approximations cause the small differences in the Rust renderer.

Figure 3.6.: Comparison between Mitsuba and the Rust implementation. The MAE for each
image is annotated for the Rust renderer.

The rendering is additionally done inside of the network. Here, it is implemented with
Tensorflow operations in python. The Tensorflow operations contain information
about their gradients. This allows for a comparison of rendered images instead of

4https://www.rust-lang.org

48

https://www.rust-lang.org

3.3. Dataset

just the texture maps for the error calculation. Thus, the error can be traced back to
the predicted texture maps. Label-free training is a possibility with this system. It
is worth noting that this is only possible because no light bounces are calculated.
Additionally, flat samples from a perpendicular position to the surfaces are captured.
This viewing angle prevents occlusion on surfaces. Both light bounces and occlusion
prevent a proper derivation of the render equation. By using only one light source,
the derivation is simplified compared to other setups.

It is either recommended to limit the network output for the predicted base color
and roughness maps to (0−1] or adding several division checks which prevent a
division by zero.

3.3. Dataset

The dataset consists of 415 individual samples. The samples are taken from royalty-
free assets from artists on https://gumroad.com/, https://freepbr.com/, https:
//www.3d-wolf.com/ and http://poliigon.com/. Each sample consists of a base
color, normal, roughness, and a metallic map.

3.3.1. Augmentation

As 415 samples is a small dataset for machine learning, several preprocessing steps
are applied to increase the number of possible samples. Most maps are between a
2048×2048 and 5120×5120 pixels resolution. The network is trained with 512×512
pixels resolution images. In consequence, several samples can be generated from
each sample.

The processing starts by taking a random square section of the image. The clipping
is 2.5 times the size of the network input size. With the desired size of 512×512, the
section needs to be 1280×1280 pixels. The cropped image is then rotated randomly,
and the largest possible square is extracted from the resulting image again. The
result is then resized with bi-cubic interpolation to the desired 512×512 pixels. The
base color and roughness maps are then processed independently. For the base color
map, a transformation to the Hue Saturation Value (HSV) color model is used to
change the hue, saturation, and value randomly. The hue is limited to vary from -0.1
to 0.1 with a wrap around to 0 for values larger than 1 and 1 for values smaller than
0. The lightness and saturation are changed in a range from −0.2 to 0.2. Values are
clamped to 0 to 1. Lastly, a contrast change is applied. However, these changes are
only used if the metallic map indicates a non-metallic material. Otherwise, invalid
values for the Fresnel term will be calculated. For the roughness map, a random
value change between −0.4 and 0.4 is added, and the result is clamped to 0 to 1. The
contrast is altered for the roughness map, too.

49

https://gumroad.com/
https://freepbr.com/
https://www.3d-wolf.com/
https://www.3d-wolf.com/
http://poliigon.com/

Chapter 3. Implementation

Each sample is processed ten times by this pipeline. This increases the training
size from 415 sample to 4150 samples. 80% of the set are used for training, and the
remaining 20% are for the validation step. Resulting in 3320 for the training and 830
images for the validation set.

With this preprocessing pipeline, the range of possible materials is significantly
increased. The changes in possible roughness values are necessary for the network
to learn specular behaviors.

3.3.2. Rendering

Currently, the rendering is based on a simple spherical geometry model. In future
work it is recommended to take the exact geometry of the light stage into account
(see section 2.1 and section 4.2).

Figure 3.7.: Example of the current rendering geometry setup. The yellow sphere represent
light positions. The blue cube represents the camera position and the gray surface
is the sample.

50

3.3. Dataset

The current geometry is visualized in fig. 3.7. The sample is 1×1 unit large and is
centered in the origin of the coordinate system. The camera is placed 1 unit away
from the sample and is directly perpendicular to the surface. The camera position is
(0,0,1).

x

y

z

P

φ

θ

Figure 3.8.: The spherical coordinate system.

The five light source are positioned on a sphere with a radius of 1.5 units. The
light positions are defined in spherical coordinates (θ,φ). Figure 3.8 visualizes the
spherical coordinate system. The coordinates in degree are: (0,0), (80,45), (80,225),
(45,330), (60,120). These positions are selected empirically and should be replaced
with the actual positions of the light stage setup (see section 2.1) in future iterations.

(a) Highlight surface normals (b) Highlight the base color

Figure 3.9.: Example for different light positions and resulting images.

The choice for the light angles is because of the first position (0,0) providing flat

51

Chapter 3. Implementation

lighting without occlusions and shadowing. This light angle provides most of the
information for the base color map and is visualized in fig. 3.9b. The other light angles
are located at a flatter angle towards the surface. This produces visible information
for the shadowing and general reflectance behavior of the surface. Figure 3.9a
displays the visible structure of the surface.

The rendering can create a range larger than 0 to 1 output values due to harsh direct
reflections. The large value range provides a problem while training the network.
A normalization step is required to provide a roughly equal value range for the
network input. Local tone mapping operators like the method by Reinhard et al. [33],
defined as x = x

1+x , provide a way to reduce the range of an HDR image to [0−1]
[33]. However, diffuse, rough materials and highly glossy materials are now in the
same value range. This obfuscates information about the specular material from the
input. An improved approach is to use a function which can be applied globally
for all samples. One solution is to clip the images to a 0 to 1 range. Information in
the highlights is completely removed in this method. Another solution is to apply
a function which reduces the range significantly like x = log(x + 1). The variation
can still be substantial after the log transformation, but a clipping operation can
now be applied afterward. The highlights still lose information. However, due to
the previous range reduction only particular highly specular materials are affected.
This method provides the best results and is thus used for the network training.

3.4. Convolutional Neural Network

In this section, the process of designing the architecture of the Multi-Input-Multi-
Output-Convolutional-Neural-Network (MIMOCNN) is discussed.

3.4.1. Architecture

The general idea behind most of this network is an encoder-decoder structure. In this
architecture, the network first compresses and distills the general information about
the BRDF and then decodes this information into spatially varying texture maps.

Preliminary tests use the aforementioned encoder-decoder setup which consists of
convolutions and transposed convolutions (see section 2.2.8). However, the decoder
is not capable of producing visibly pleasing output maps due to information about
details getting lost. The U-Net architecture proposed by Ronneberger et al. utilizes
skip connections between matching layers [34]. Figure 3.10 visualizes this structure.
Skip connections are concatenations of tensors in a specific dimension. Mostly,
the dimension of the channels is used for this. For example, the output from the
first convolution, marked in blue, is added to the output of the third transposed
convolution, marked in green. The result of the concatenation is a vector with the

52

3.4. Convolutional Neural Network

16x16x3 8x8x64

4x
4x

12
8

2x
2x

25
6

1x
1x

51
2

2x
2x

25
6

4x
4x

12
8

8x
8x

64

16x16x3 16x16x3

Figure 3.10.: Example of a U-Net architecture. The dashed red lines represent a skip connec-
tion.

shape 8×8×128. The advantage of skip connections is allowing information from
layers with less spatially compression being added back in the decoding step. The
visible detail of the resulting output is greatly increased.

However, the U-Net architecture is intended for a single input image and a single
output image. The input, on the other hand, consists of five images with different
lighting conditions. A first approach is to join the different images in the RGB channel
dimension, resulting in a single input of shape 512×512×15. The output can be
defined in the same way. The base color and normal maps consist of three channels
and the roughness, and metallic maps use one channel each. This results in eight
output channels. The general architecture is visualized in fig. 3.11. The Leaky ReLU
[23] activation function is used throughout the network except for the last transposed
convolution. As the input range of the images is between 0 and 1, the output should
be in the same range. The sigmoid activation function fulfills this requirement and
is used here. A batch normalization [13] is used throughout the entire network to
allow for higher learning rates and improve the network initialization. A dropout
[44] regularization is applied in the first four layers of the decoder network. Another
change to the U-Net architecture is applied at this point. The original U-Net uses
max pooling where this version uses strides [43]. This increases the training speed
and convergence rate significantly. Additionally, the memory usage while using
strides is drastically lower. The results are neither perceptually nor in the MAE loss
worse. As the network contains a large number of weights due to the large input
size, the reduction in memory usage is especially helpful and allows for higher
batch sizes. Lastly, a kernel size of three is used for convolutions and transposed
convolutions. The first tests do not provide satisfying results, and the number of
filter outputs for each convolution needs a significant increase. Due to the size of the
network, this approach is discarded and is not further explored.

53

Chapter 3. Implementation

512x512x15 256x256x64

12
8x

12
8x

12
8

64
x6

4x
25

6
32

x3
2x

51
2

16
x1

6x
51

2
8x

8x
51

2
4x

4x
51

2
2x

2x
51

2
1x

1x
51

2

2x
2x

51
2

4x
4x

51
2

8x
8x

51
2

16
x1

6x
51

2
32

x3
2x

51
2

64
x6

4x
25

6
12

8x
12

8x
12

8
25

6x
25

6x
64

512x512x8
512x512

Figure 3.11.: Diagram of the first Multi-Input-Multi-Output-Convolutional-Neural-Network.
Based on the U-Net architecture [34]. The kernel size for the convolution and
deconvolution is three. Instead of a max pooling a stride is used. The dashed
red lines represent a skip connection.

(a) Base color (b) Normal (c) Metallic (d) Roughness

Figure 3.12.: Results of the first CNN version. Notice the lighting information in the base color
map and the central artifact in the normal map. Additionally, the roughness
map is noisy and does not contain plenty of detailed information.

54

3.4. Convolutional Neural Network

A second approach uses the U-Net architecture, but the input images are stacked
in a new dimension. This dimension is further referred to as the depth. The output
of the network does not utilize the depth dimension and produces an output with
eight channels. The first layers of the network now utilize 3D convolutions with a
stride of two in every dimension. Due to the stride, the width, height, and depth
dimensions are halved in every step. Thus, the five input images are merged in three
layers. As the skip connections from the initial layers now have an additional depth
dimension, each dimension is individually appended to the matching transposed
convolution result. The results of this architecture are visible in fig. 3.12. In specular
materials, a bright spot from the perpendicular light direction (see section 3.3.2) is
particularly noticeable in the base color map.

As the bright spot in the center may be a leftover due to the quick merging of several
images, a third network architecture is tested which utilizes 3D convolution in the
entire encoder. The depth dimension is not reduced in the encoder network. The
merge of the depth dimension for the 2D decoder is done in several fully connected
layers. The output of the last layer in the encoder is flattened and passed to the fully
connected layer which reduces the output to a fifth of its size. This is then reshaped
to the output shape of the last decoder layer with the depth dimension omitted. The
previous method for skip connections is not feasible anymore, as all channels are
appended for every depth dimension. This results in a large number of channels
after each concatenation and thus a large number of weights in the following layer.
As 3D convolutions require a large number of weights itself, the size of the network
is not viable anymore. Instead of stacking the output, a trainable weight variable
for each encoding layer and depth dimension is introduced. The output in each
depth dimension is multiplied by the corresponding weight multiplicator and then
summed up to a single depth dimension. Thereby, for each layer, only five additional
merging weights are used. The size of the network is still large, and the training
progress is slow. After 100.000 steps the results are not converged due to the ample
search space.

To reduce the size of the network, 2D convolutions with reused weights are tested
in another architecture. Each rendered image of a sample is passed to the same
convolution layer. The weights of each convolution operation are used for all lighting
conditions and are not specific to an individual condition as before. The results of
each image are concatenated in a depth dimension. After the encoder, the depth
dimensions are merged in a fully connected layer. The method to merge depth
dimensions for skip connections is applied here, too. The training speed and general
performance of the network improved compared to the previous version. However,
the predicted normal maps are only capable of representing a completely flat surface.
This is visible in fig. 3.13a. A possible explanation is that the error from a normal
map is only visible in two of the five input images (see section 3.3.2). These images
have a particular low lighting position, and they highlight the normal structure. In
the other images, the surface structure is either not visible or not as pronounced. The
normal map error simply gets shadowed by the error on the other maps. Maps such

55

Chapter 3. Implementation

(a) Rough plaster wall

(b) Galvanized steel

Figure 3.13.: Comparisons for the full two-dimensional convolution network with weight
reuse.

as the base color map can produce a larger error in all images. Even with an increase
in filter outputs for every convolution layer, the network is not capable of producing
normal details. Additionally, the network is not able to remove the highlights of the
light sources. In fig. 3.13b this is illustrated in the roughness, metallic and base color
maps. In general, the results of this architecture are not detailed and blurry. The
network is not expressible enough to estimate the inverse render function.

As the full 3D convolution encoder is too large and a full 2D convolution encoder
not expressive enough, a combination is proposed in the final architecture. This
architecture is referred to as the Multi-Input-Multi-Output-Convolutional-Neural-
Network or MIMOCNN. The concept of using 3D convolutions to merge the different
lighting conditions is applied here as well. However, it is not used in the encoder
network but moved to a separate preparation stage. Here the depth dimension
of the input is reduced with 3D convolutions and a stride of two in the depth
dimension. The other dimensions are not reduced in this step. Afterward, the results
are passed to the modified U-Net described at the beginning of this section. The
resulting architecture is visualized in fig. 3.14. Exact configurations for each layer
are listed in table 3.1. Layers named as Conv3D-# are 3D convolution, Conv-# define

56

3.4. Convolutional Neural Network

5x512x512x3

3x
51

2x
51

2x
16

2x
51

2x
51

2x
32

1x512x512x32

256x256x64

12
8x

12
8x

12
8

64
x6

4x
25

6
32

x3
2x

51
2

16
x1

6x
51

2
8x

8x
51

2
4x

4x
51

2
2x

2x
51

2
1x

1x
51

2

2x
2x

51
2

4x
4x

51
2

8x
8x

51
2

16
x1

6x
51

2
32

x3
2x

51
2

64
x6

4x
25

6
12

8x
12

8x
12

8
25

6x
25

6x
64

512x512x8
512x512

Figure 3.14.: Diagram of the Multi-Input-Multi-Output-Convolutional-Neural-Network. A
U-Net inspired network. The kernel size of the convolution and deconvolution
is three. Instead of max pooling, a stride is used. The dashed red lines represent
a skip connection.

a 2D convolution, TConv-# are transposed 2D convolution, Dropout are the dropout
operation with a keep probability of 0.5 and the Concat x layers represent the skip
connections to the layer x. A batch size of four is used for the training, and it is
performed on a single NVIDIA GeForce GTX 1080 Ti.

3.4.2. Loss Formulation

In this section, several loss formulations are discussed. One of the first tested losses
is the MSE loss against the ground truth parameter maps. The MSE loss function
produces slightly blurry images after the training. This lines up with the work
of Zhao et al. [52]. The MAE loss is proposed in this work as an improvement
compared to the MSE loss [52]. In the specific case of this thesis, it improves the

57

Chapter 3. Implementation

Layer Kernel | Stride Batchnorm Activation Output Size
Conv3D-1 3×3×3 | 2×1×1 Leaky ReLU 3×512×512×16
Conv3D-2 3×3×3 | 2×1×1 Leaky ReLU 2×512×512×32
Conv3D-3 3×3×3 | 2×1×1 Leaky ReLU 1×512×512×32
Conv-1 4×4 | 2×2 Leaky ReLU 256×256×64
Conv-2 4×4 | 2×2 X Leaky ReLU 128×128×128
Conv-3 4×4 | 2×2 X Leaky ReLU 64×64×256
Conv-4 4×4 | 2×2 X Leaky ReLU 32×32×512
Conv-5 4×4 | 2×2 X Leaky ReLU 16×16×512
Conv-6 4×4 | 2×2 X Leaky ReLU 8×8×512
Conv-7 4×4 | 2×2 X Leaky ReLU 4×4×512
Conv-8 4×4 | 2×2 X Leaky ReLU 2×2×512
Conv-9 4×4 | 2×2 X ReLU 1×1×512
TConv-1 4×4 | 2×2 X ReLU 2×2×512
Dropout - - - 2×2×512
Concat Conv-8 - - - 2×2×1024
TConv-2 4×4 | 2×2 X ReLU 4×4×512
Dropout - - - 4×4×512
Concat Conv-7 - - - 4×4×1024
TConv-2 4×4 | 2×2 X ReLU 8×8×512
Dropout - - - 8×8×512
Concat Conv-6 - - - 8×8×1024
TConv-3 4×4 | 2×2 X ReLU 16×16×512
Dropout - - - 16×16×512
Concat Conv-5 - - - 16×16×1024
TConv-4 4×4 | 2×2 X ReLU 32×32×512
Concat Conv-4 - - - 32×32×1024
TConv-5 4×4 | 2×2 X ReLU 64×64×256
Concat Conv-3 - - - 64×64×512
TConv-6 4×4 | 2×2 X ReLU 128×128×128
Concat Conv-2 - - - 128×129×256
TConv-7 4×4 | 2×2 X ReLU 256×256×64
Concat Conv-1 - - - 256×256×128
TConv-8 4×4 | 2×2 Sigmoid 512×512×8

Table 3.1.: Detailed final network architecture.

58

3.4. Convolutional Neural Network

results, too. Zhao et al. additionally tested Structural similarity (SSIM) [49] and
Multi Scale-Structural similarity (MS-SSIM) [48] and a combination of MS-SSIM
with the MAE loss. These methods improved the visual quality of the image, but
implementation and evaluation of these loss functions are left for further research.
As the error is calculated for each texture map independently and then summed
up, the error from each map is assumed to be equally visible in a rendered image.
However, this is not true for the case of parameter maps in rendering. For example,
an error in the base color map is directly visible in every lighting condition. Errors
in the roughness map are only visible in grazing angles and do not contribute as
much to the rendered output.

By adding the knowledge of rendering to the network and by comparing the rendered
predicted texture maps to the input images, the importance of specific maps can
be learned as well. For this, the rendering algorithm described in section 3.3.2 is
implemented in Tensorflow. The error from the rendered predicted images to the
input images can the backpropagated through the rendering algorithm. This is
possible because every operation from Tensorflow in the rendering process contains
its gradient. The MAE loss is then computed against the input images. The results of
the network are mostly improved. Two problems arise with this approach:

1. The output is fitted to the five input images

2. The metallic and roughness maps can be used in conjunction to express specular
behavior

Both problems are visible in fig. 3.15. As seen in fig. 3.15, the corners of the roughness
map are brighter, and the corners of the metallic map are darker. This is due to the
four light source being placed at the corners and one light source directly above
the sample. The network in this example only trained against the five input images
and no ground truth information is provided. Thus, the network tries to optimize
only against the five input images. The error for these specific light configurations
is low. New light and view configurations create a perceptually noticeable error.
Additionally, it is obvious from this example that metallic and roughness can both
be used in conjunction to express specular behavior.

Figure 3.15.: Example of ambiguity of reflective behavior with roughness and metallic maps.

The first problem is fixed by adding additional input images with random lighting
conditions. These images are not passed into the network. They are only used in the
calculation of the loss. Thus, they are referred to as loss images. The predicted maps

59

Chapter 3. Implementation

are then rendered with the fixed light locations of the input images and the random
ones of the loss images. The random light positions are currently sampled randomly
from a uniform hemisphere distribution. In further works, the light positions need
to be randomly selected from the possible locations of the light stage (see section 2.1).
The MAE loss for each image is then summed up. Thereby the network is forced to
not only optimize against a single lighting setup, but to random ones who generalize
the results.

The second problem is more challenging to correct since determining if a material is
metallic or not is difficult from a single viewing angle. A possible solution is to either
pass in the ground truth knowledge of the metallic map or implement the support
for different viewing angles in the renderer. As the implementation for different
viewing angle is more complicated especially as the implementation needs to be
done in Tensorflow operations, the solution of adding the metallic maps is chosen
here. A MAE loss from the predicted metallic map to the ground truth map is added
and merged with the loss to the input images and loss images.

Both of these solutions improve the output of the network drastically.

The previous loss formulation only calculates the loss for each image individually
and sums the errors. Significant losses in a single image can be shadowed by smaller
losses in other images. If an individual image contains a specific shadow due to the
normal and the particular lighting condition, it can be invisible in other images. It is
assumed that the learning behavior improves when the error is highlighted.

To test this hypothesis a new loss formulation, the max loss, is proposed. For this,
the RGB channels on the rendered image from the predictions and the input images
are summed up. For every rendered image from the predictions the MAE loss to the
respective input image is calculated. The maximum error for each pixel between
all these images is then searched. Equation 3.12 describes this process. The argmax
operation returns the maximum error of the depth dimension d. The variables x and
y describe the width and height dimension, and c is the channel dimension for the
RGB values.

emax(p, l) =
1

xy

∑
x

∑
y

argmax
d

∑
c

(= ld,x,y,c−pd,x,y,c) 3.12

However, the result from this loss function worsens the predicted output. Addition-
ally, the training behavior of the network is not stable. This is most likely due to
dropped paths to different images with this method.

Another evaluated loss is the mixed absolute relative loss. As the renderer produces
images which exceed the 0 to 1 range, a method for preserving the unclipped range is
evaluated. As relative small difference in large values are punished disproportionately
with the MAE, a relative absolute error e = x̂−x

x̂ is preventing such harsh punishments.
Here x̂ represents the label and x the prediction. However, for dark areas, the relative

60

3.4. Convolutional Neural Network

error produces large errors or can cause a division by zero. A combination between
the MAE and relative absolute error can prevent this. The combination is defined as:

emix(p, l) = λ(l−p) + (1−λ)
l−p

l

λ =
v− l

l

3.13

With p as the prediction, l as the label and v as a configurable threshold. The threshold
v is set to 1 as most values are within the 0 to 1 range. However, the error still does
not enable unclipped input as the results contain visible artifacts. This is caused by
the network still receiving unclipped values, and the weights inside the network are
difficult to adjust to totally varying value ranges. Thus, the mix loss is not used. The
final loss formulation is a MAE error with the logarithmic image transformation and
a 0 to 1 clipping as described in section 3.3.2.

Figure 3.16.: Difference between error from texture maps and renderings. The ground truth
is located left in each pair and the prediction on the right. Enlarged figure A.1a
on page 80.

The error when comparing rendered images can be low, while the error when
comparing the texture maps can be high. For example, in fig. 3.16 the error for a
rendered image is low while the error in the base color map compared to other
results is high (see section 3.4.4). With only a single viewing position the network is
not capable of deciding whether the reflection is due to a lighter base color map or a
smoother roughness map.

To guide the network the ground truth images are added to the training and the
predicted texture maps are compared against the ground truth maps with a MAE
loss. In the beginning, the knowledge of which texture map increases the rendered
result the most is available due to the re-rendering. The rendering error acts as an
importance sampling in the beginning. In later epochs, the error from the comparison
against the ground truth texture maps helps to clear ambiguity in specular behavior.
As the images are only used for the loss calculation, these inputs can be left out for
the prediction of new materials.

61

Chapter 3. Implementation

3.4.3. Optimization

Several optimizers and strategies for setting a learning rate are explored. The Adam
Optimizer with default parameters and a decreasing learning rate in later epochs
produces the best results. Each epoch evaluates all samples, resulting in a step size
of 830. The training is performed for 300 epochs. Initially, the learning rate is set to
1e−3. It is found that decreasing the learning rate in later epochs is improving the
convergence. The learning rate is lowered as followed:

after 100 epochs: 1e−4

after 180 epochs: 5e−5

after 220 epochs: 1e−5

after 260 epochs: 5e−6

These parameters are gathered empirically. The error is demonstrated in fig. 3.17a
and fig. 3.17b. As seen in both figures a decrease is not visible for the smoothed error
anymore, and thus the training can is converged. In both charts, a drop in the loss is
noticeable at the global step of 83000. This corresponds to the epoch 100. Here, the
learning rate is reduced, and the error is reduced significantly afterward. Without
lowering the learning rate, the error is not converging to this value.

(a) Total cost (b) Validation total cost

Figure 3.17.: Overview of the CNN training error. The smoothed error is represented as a
red line.

Besides the Adam optimizer, several different approaches are tested. For example,
cyclic learning rates with the momentum optimizer are tested [42]. In cyclic learning
rates, the learning rate repeatedly changes between a minimum and maximum
learning rate every x epochs. A simple approach for this cycle is to use a triangle
function. The intuition behind this method is to start with a low learning rate. The
initial direction of the gradient is determined. Then the step size increases to move
faster to the minimum. The learning rate is lowered again to search for the minimum
more reliably. The cycle is then repeated. The higher learning rates in each following
cycle can prevent the network to settle for a local minimum instead of a global one.
The higher learning rates can move the optimization out of a local minimum due
to increased step sizes. However, in this specific task, cyclic learning rates do not

62

3.4. Convolutional Neural Network

perform better than the Adam optimizer.

Another method is to decrease the learning rate automatically if the validation error
is not decreasing in x epochs. This can be done by lowering the learning rate by
80% when the validation error is not decreasing anymore. The method provides
good results, but the behavior is unpredictable while training and setting suitable
parameters for the monitored epoch length x and the decrease percentage is difficult.
Thus, the simple method of decreasing the learning rate after x epochs is preferred.

3.4.4. Results

The network is trained for 300 epochs, and after each epoch, an inference step against
the validation dataset is performed. The epoch which produced the lowest validation
error is saved and used for evaluation.

To evaluate the performance of the network, 26 materials are estimated. These
samples are from completely new classes, which are neither in the training set nor
the validation set. Some of these samples provide no resemblance to the samples in the
dataset. The mean result across all samples are visible in table 3.2. By testing against
completely unseen example, the generalizability of the network is demonstrated.

The rendered samples in this section are tone mapped and gamma corrected for
visual comparison. Additionally, the exposure is increased by a factor of 32 before
the tone mapping and gamma correction. The Reinhard tone mapping [33] is applied
and afterwards gamma corrected with x

1.0
2.2 .

Name MAE MSE SSIM
Base color 0.0414 0.0033 0.8824
Normal 0.0176 0.0009 0.9542
Roughness 0.0396 0.003 0.8793
Metallic 0.0585 0.0472 0.9193

Table 3.2.: Comparison between 26 ground truth samples and CNN predictions. The values
are the mean value across all images.

For the MAE and MSE a lower value and for SSIM a higher value is better. As seen
in table 3.2 the mean results for the metallic and normal map are nearly identical to
the ground truth. In particular, the MAE is interesting as this error can be thought
about as the mean pixel value error in percent. For example, in the base color map,
the network produces a mean value error of 4%. A predicted output can then be
classified as either well- or ill-predicted. This can be done by using a threshold value.
Figure 3.18 visualizes the well-predicted percentage with an increasing threshold
level. For each sample, an 80% well prediction rate is achieved with a threshold of
0.6% for the metallic map, 2% for the normal map and 4% for the base color/roughness

63

Chapter 3. Implementation

Figure 3.18.: Percentage of well predicted samples from the CNN for an increasing threshold.

map. For the normal and roughness maps, all samples are below an error of 4% and
9%, respectively. For the remaining maps, the distribution is larger.

Figure 3.19.: Box plot for the mean error of the 26 CNN generated samples. The y-axis is
scaled logarithmically.

The distribution of the MAEs is displayed in fig. 3.19. It is apparent that most texture
maps provide a consistent error with few outliers. The metallic map is an exception.
Here the error spans a substantial range. The largest outliers are for the sample
visible in fig. 3.20. As seen in fig. 3.20 the network mostly classified the material as
a non-metallic material. However, the rendering error is low and perceptually the
difference between the ground truth and predicted re-rendering is close. Different
view position would highlight the metallic behavior of materials more. As discussed
in section 3.4.2 different viewing angles are left for further work.

In fig. 3.21 several samples from the 26 samples dataset are compared. Figure 3.21a,

64

3.5. Generative Adversarial Network

Figure 3.20.: Comparison for a grainy steel material. The ground truth is located left in each
pair and the prediction on the right. Enlarged figure A.2a on page 81.

fig. 3.21c and fig. 3.21d display that the network is capable of learning normal maps
with complex structures and fine details. Figure 3.21a demonstrates that the network
tends to extract roughness information from the texture of the sample. As most
samples in the dataset contain correlations between the overall texture, the base
color map, and the roughness, this needs to be addressed in future research with
an extended dataset. In fig. 3.21b the network can generate roughness and normal
maps for even fine detail regions as the bricks. Figure 3.21d illustrates the reliable
extraction of information from detailed surfaces like wood. The base color and
roughness texture maps contain high detail and are predicted accurately.

As an additional example fig. 3.22 is shown. Here, the ground truth normal map
on the left contains some unrealistic values around the structures. This sample is
taken from the training dataset. The prediction done by the network removed these
artifacts completely.

Another interesting example is shown in fig. 3.23. The rendered error is low even
when the error for the base color and roughness map is high. Visually no difference
exists in the rendered result. This displays how the maps can be used interchangeably
to express material behavior. In this case, the base color and roughness maps are
used to represent the surface reflectance. Splitting this is a difficult task with the
limitation of five images and a fixed view position.

3.5. Generative Adversarial Network

The architecture described in section 3.4 is extended to a GAN architecture in this
section.

65

Chapter 3. Implementation

(a) Christmas Sweater. Enlarged figure A.3a on page 82.

(b) Brick wall. Enlarged figure A.4a on page 83.

(c) Tree bark. Enlarged figure A.5a on page 84.

(d) Old wood planks. Enlarged figure A.6a on page 85.

Figure 3.21.: Comparisons of different materials generated by the CNN. The ground truth is
located left in each pair and the prediction on the right.

66

3.5. Generative Adversarial Network

Figure 3.22.: Example for an improved normal map.

Figure 3.23.: Comparison for a leather material. The ground truth is located left in each pair
and the prediction on the right. Enlarged figure A.7a on page 86.

3.5.1. Architecture

The concept of GANs is recently popular and lends itself to an image to image
mapping. This concept is explored by Isola et al. [14]. The proposed framework of
Isola et al. is applied to the model proposed in table 3.1 and fig. 3.14. Additionally,
the changes for the DCGAN architecture from [31] are applied (see section 2.2.9).
As the range of the generator output is changed, the output needs to be rescaled to
[0−1] for the rendering algorithm. However, the network in this architecture is not
capable of learning, and the resulting predicted maps only consist of artifacts.

The DCGAN architecture changes are not producing reliable results. Even when
the generator is trained on its own with a MAE loss, the network is not capable
of learning accurate BRDF predictions. The original unmodified model in fig. 3.14
is used instead. This includes the output layer with a sigmoid activation function.
A rescaling of the generator output for the rendering operations is not required
anymore.

The discriminator network is modified, too. The network is now based on Zhu et al.
[53], which is a follow up of Isola et al. [14]. The discriminator now utilizes instance

67

Chapter 3. Implementation

normalization [46] instead of batch normalization [14]. Batch normalization performs
normalization on the batch and all spatial dimensions. Instance normalization on
the other hand only performs normalization on the spatial dimensions. Each input
image is treated by itself.

Layer Kernel | Stride Instance Norm Activation Output Size
Conv3D-in-1 4×4×4 | 2×1×1 Leaky ReLU 3×512×512×16
Conv3D-in-2 4×4×4 | 2×1×1 Leaky ReLU 2×512×512×32
Conv3D-in-3 4×4×4 | 2×1×1 Leaky ReLU 1×512×512×32
Conv3D-ma-1 4×4×4 | 2×1×1 Leaky ReLU 2×512×512×16
Conv3D-ma-2 4×4×4 | 2×1×1 Leaky ReLU 1×512×512×32
Concat
Conv3D-in-3 &
Conv3D-ma-2 - - - 512×512×64
Conv-1 4×4 | 2×2 Leaky ReLU 256×256×64
Conv-2 4×4 | 2×2 X Leaky ReLU 128×128×128
Conv-3 4×4 | 2×2 X Leaky ReLU 64×64×256
Conv-4 4×4 | 2×2 X Leaky ReLU 32×32×256
Conv-5 4×4 | 1×1 X Leaky ReLU 32×32×512
Conv-6 4×4 | 1×1 Sigmoid 32×32×512

Table 3.3.: Detailed discriminator architecture.

The detailed discriminator architecture is illustrated in table 3.3. Where Conv3D-in-1
is a 3D convolution which input is the five illuminated images from the sample.
For Conv3D-ma-1 the input is the four BRDF parameter maps (base color, normal,
roughness and metallic). The Concat Conv3D-in-3 & Conv3D-ma-2 layer joins the two
outputs from the last input and BRDF map preparation layers respectively.

3.5.2. Loss Formulation

The proposed dual loss of Isola et al. [14] is used in this architecture. This dual loss
is defined as the GAN loss defined in eq. 2.13 added to a direct loss compared to the
ground truth. For the direct loss, the final loss formulation described in section 3.4.2
is used. The GAN loss with the direct MAE loss of the maps and renderings is
combined with a scaling factor:

L(D,G) = Ex∼pdata(x)
[
logD(x)

]
+Ex∼pz(z)

[
log(1−D(G(z)))

]
+λLMAE 3.14

Where λ is the scaling factor and LMAE is the loss function described in section 3.4.2.
Isola et al. [14] proposes to set λ to 100 and it is applied here, too.

68

3.5. Generative Adversarial Network

3.5.3. Optimization

The training is found to be unstable. By training the generator network beforehand,
the combined training of the generator and discriminator improved and the results
are more accurate. Thus, the generator network is trained for 100 epochs with a
learning rate of 1e−3. The Adam optimizer with default parameters is used for the
training process. A batch size of 4 is chosen here.

The discriminator and generator are trained afterward for 215 epochs over the whole
dataset. An initial learning rate of 2e−4 is chosen. The learning rate is reduced after
145 epochs to 1e−4. The optimization is done by the Adam optimizer. However, the
β1 parameter is set 0.5. This change is proposed by Radford et al. [31] to increase the
training stability. Due to the larger size of the networks, a batch size of 1 is selected.

Figure 3.24.: The mean absolute error for the pre-trained generator and the GAN afterward.

In fig. 3.24 the loss against the rendered images and ground truth maps is displayed.
The red lines represent the smoothed and non-smoothed MAE loss of the generator
only training process. The blue line afterward illustrates the same error but in this
case for the generator and discriminator learning in conjunction.

In fig. 3.25 the accuracy is visualized. An accuracy of 1 is the maximum achievable
value. In the diagram, the blue line represents the smoothed and non-smoothed
discriminator accuracy. This accuracy represents the ability of the discriminator
to detect generated from ground truth samples reliably. As seen in fig. 3.25 the
discriminator is not capable of detecting whether the sample is ground truth or
generated in the end anymore. The red line represents the smoothed and non-
smoothed generator accuracy. This accuracy represents the number of samples being
classified as ground truth, even when they are generated. Interestingly the generator
accuracy only achieves a value between 0.2 and 0.3 accuracy. The discriminator
achieves 0.5 accuracy. This signifies that the discriminator is classifying a significant
amount of ground truth samples as generated. An explanation for this behavior is
that the dataset is generated from various artists (see section 3.3). Some of these

69

Chapter 3. Implementation

Figure 3.25.: The accuracy of the GAN.

samples can contain unrealistic values. The discriminator may determine these
samples as not fitting in the dataset and thus as a generated sample.

3.5.4. Results

The rendered images are processed for clearer visibility in the same manner as the
ones described in section 3.4.4.

Name MAE MSE SSIM
Base color 0.0382 0.0031 0.9101
Normal 0.0207 0.0011 0.9435
Roughness 0.0675 0.0075 0.8574
Metallic 0.0855 0.08 0.9068

Table 3.4.: Comparison between 26 ground truth samples and GAN predictions. The values
are the mean value across all images.

As seen in table 3.4 the results are mostly comparable to the CNN-version in table 3.2.
The base color map is predicted more accurately by the GAN. The prediction for
the roughness and normal maps are of the same accuracy. The metallic map is
predicted slightly worse, but the prediction of the metallic map follows the dataset
more closely regarding metallic maps being sparse (see fig. 3.27). The percentage of
well-predicted samples is visualized in fig. 3.26. Compared to the CNN in fig. 3.18
the nearly perfect prediction is more common. 20% of the base color samples are
predicted with a MAE lower than 0.02. For the roughness map, the rate is about
15% with the same threshold. The CNN is not capable of generating base color and
roughness maps with an error that low. However, for the normal map the CNN is
capable of estimating a large number of samples with a near perfect output. The
CNN is capable of predicting 80% of the samples with a MAE of 0.02. The GAN on

70

3.5. Generative Adversarial Network

Figure 3.26.: Percentage of well predicted samples from the GAN for an increasing threshold.

the other hand only predicts 50% of the samples well with this threshold level, but
the normal map from all samples is predicted with a lower threshold level than the
CNN.

Figure 3.27.: Comparison of the GAN predicted grainy steel material. The ground truth is
located left in each pair and the prediction on the right. Enlarged figure A.2b
on page 81.

By visual comparison of the predicted samples of the GAN with the CNN, the
performance can be analyzed more closely. The wrongly predicted grainy steel
material in fig. 3.20 from the CNN is predicted also as a non-metallic material in
fig. 3.27. However, the maps are more homogeneous and do not feature uneven
textures like the base color texture in the CNN prediction.

In fig. 3.28 the same samples as in the CNN comparison (see fig. 3.21) are displayed.
The same capabilities of parameter estimation, as described in section 3.4.4, are
noticeable here, but the results of the GAN approach are slightly sharper and provide
higher detail.

71

Chapter 3. Implementation

3.6. Analysis

A saliency map is a technique of visualizing the inner working of a network. The
saliency map is the gradient from the predictions of a network through all of its
layers to the input. Thus, higher values represent a steeper gradient and in turn,
results in a more significant information flow. In fig. 3.29 the gradient for each
parameter map to each input image is visualized. Two representative samples, a
tree bark, and a metal are selected. The tree bark is an interesting sample because of
the detailed structure of the base color, normal and roughness maps. The metal is
selected to highlight the detection of metallic surfaces.

In fig. 3.29a and fig. 3.29b the different patterns in the saliency maps are noticeable.
Every sample and every texture map is handled in a slightly different manner by
the network. All samples have in common that the network is evaluating connected
patches. Additionally, it is visible that the network is receiving the strongest gradients
from unlit regions. For example, in fig. 3.29b this is especially visible in the normal
map, which produces a steeper gradient in all areas without a strong highlight.
This is due to the images in the network are clipped (see section 3.3.2). The input
images in the fig. 3.29 are not the same ones the network receives. The images in
the comparisons are tone mapped with the Reinhard operation [33] and gamma
corrected for better visual perception. The clipping results in a loss of information
and feature extraction from other regions are more viable for the network.

Another fascinating insight is that the gradient of the metallic map is only steep in
a few select regions. The prediction of each pixel is thus dependent on non-local
information from the input images. On the other hand, each pixel of the normal map
is highly reliant on local information. In fig. 3.29a it is noticeable that the steepest
gradients are on shadowed regions. This behavior is intuitive for humans as the
shadowed areas in contrast to the lit regions provide a visual cue about the surface
structure.

72

3.6. Analysis

(a) Christmas Sweater. Enlarged figure A.3b on page 82.

(b) Brick wall. Enlarged figure A.4b on page 83.

(c) Tree bark. Enlarged figure A.5b on page 84.

(d) Old wood planks. Enlarged figure A.6b on page 85.

Figure 3.28.: Comparisons of different materials generated by the GAN. The ground truth is
located left in each pair and the prediction on the right.

73

Chapter 3. Implementation

(a) Tree Bark saliency maps. Enlarged figure A.8 on page 87.

(b) Metal saliency maps. Enlarged figure A.9 on page 88.

Figure 3.29.: Saliency maps for different samples. For each parameter map the saliency map
for every input image is visualized.

74

4. Discussion

In this chapter, the results and contributions are discussed. The advantages and
disadvantages of the proposed system are highlighted, and an outlook for future
work is presented.

4.1. Conclusion

The main contribution of this thesis is a framework for an automatic BRDF estimation
which only depends on five input images with a fixed viewing position. The resulting
spatially varying BRDF parameter maps are estimated at a reasonably high resolution
and can be used in video games and movie productions. Due to the low number of
input images and the fixed viewing position, the material capture time is especially
low. This is due to no complex setup with a motorized camera or light is necessary.
The setup for training the network is flexible enough to allow for retraining with
different light positions. This leads to the possibility of designing different scanning
devices. In section 4.2 a potential portable setup is introduced.

The predictions of the proposed networks are accurate for most cases. In some cases,
materials do not correspond to any other sample in the training set. Here, the results
may vary. These corner cases will require manual human correction. It is possible
that these cases will vanish with a more extensive dataset.

A differentiable rendering framework to be used inside a neural network is cre-
ated. This framework is currently capable of rendering materials on a flat surface.
However, enabling rendering of more complex surfaces is achievable by supporting
a deformable plane, which fits the scene geometry. This can be used to render an
arbitrary scene from a single perspective.

Additionally, first steps are taken at enabling accurate BRDF capturing in the light
stage at the University of Tübingen. Here, the camera position is transformed into
the coordinate system of the calibrated light locations on the spherical gantry. This
is done without or few visible lights in the camera frame.

75

Chapter 4. Discussion

4.2. Future work

The proposed system is capable of extracting material information in a synthetic
setup. Moving the system to samples acquired from a real-world scanning setup
is an important area for future research. For this, the rendering setups need to be
calibrated. The light sources need to emit the same radiance. Additionally, the camera
light sensitivity and output range need to be adjusted to fit the rendering output.
Both of these calibrations are necessary because the proposed network is calculating
the error based on the renderings of the estimated materials. If the recorded sample
is captured with a different intensity or color calibration than the renderer, the error
will be corrected with changes to the predicted maps. For example, a color shift
can be evident in the base color map or the textures can be lighter or darker. This
error will be perceptible when these textures are used for renderings. Noise should
be added to the synthetic training samples, as noise will be present in the camera
images at least slightly. The network will handle camera noise better and provide
more accurate predictions. Additionally, the light and camera positions need to be
adjusted to fit the light stage. This change only requires retraining on the synthetic
dataset.

(a) Perpendicular camera
position

(b) Different viewing posi-
tion.

(c) Perspective matched to
perpendicular position

Figure 4.1.: Example for different viewing positions.

An additional improvement is the implementation of different viewing angles.
Information about specular behavior is more apparent with different viewing
positions, and the resulting prediction is improved. The rendering is capable of
evaluating different viewing positions. However, the results are not applicable to
real-world recorded samples. This is due to the renderer not taking geometry and
perspective distortion into account. The resulting output image is still rectangular
even when the viewing positions are at a flat angle. As a real-world recorded sample
is distorted, it needs to be perspective corrected to correspond to a perpendicular
camera position. In case of multiple images captured with different camera positions,
it is not obvious if the network is capable of extracting reliable information from the
input, as the perspective correction may cause a blurred image due to interpolation.
For example, in fig. 4.1 a perpendicular view and light position is visualized in

76

4.2. Future work

fig. 4.1a. The second viewing position is taken from a flatter angle in fig. 4.1b. The
sample in fig. 4.1c is manually perspectively correct in Affinity Photo1. The sample
in fig. 4.1c is reduced in quality. This is especially noticeable in the top section of
the image. Here, the perspective distortion is at its strongest. Another interpolation
method may result in better result. A method for automatic extraction of the sample
and removing the perspective projection needs to be developed and tested with the
network.

Some of the predicted BRDF parameters are slightly incorrect regarding the color.
This is due to the MAE loss being calculated directly on the RGB channels, and thus
applies for color and lightness changes in conjunction. Changing the color space to
a format where color and lightness are separated, can provide better results. The
HSV or CIELAB is a suitable color space for this. For the CIELAB color space, the
error metric is already defined as ∆E or the Euclidean distance [6]. This needs to be
explored in future research.

Another addition is the extension of rendering basic 3D geometry with depth maps.
Here, a surface is deformed in a way to represent the scene from a single viewpoint.
Intuitively this can be thought about cloth being placed on objects. The fabric is
distorted to capture the shape of the objects. It is possible that the network is capable
of learning BRDF parameters and depth information in future research.

(a) A mobile scanning box (b) A mobile scanning tripod

Figure 4.2.: Example setup for mobile scanning units.

As the network is capable of learning the extraction of BRDF information with
different lighting setups, different scanning setups are possible. Empirically it is
found that two of the light source should be located at a flat angle and one from above.
If this condition holds true, other scanning setups are possible. For example, mobile
scanning units can be developed. In fig. 4.2 two possible setups are introduced. The

1https://affinity.serif.com/de/photo/

77

https://affinity.serif.com/de/photo/

Chapter 4. Discussion

first mobile scanning configuration in fig. 4.2a displays a portable scanning box,
where a box is equipped with five LEDs and it can be placed on a surface. The other
setup is based on a tripod and is illustrated in fig. 4.2b.

Another interesting approach is learning the best possible light position for material
estimation. This can be done by allowing the network to optimize the light positions.
As different light positions between each epoch are challenging to learn, alternating
learning cycles between the network weights for the BRDF estimation and the light
position optimization are proposed. An additional reduction of the learning rate for
light positions optimization step is recommended. This only allows small positional
changes. The first steps for the BRDF estimation may require higher learning rates to
increase the convergence of the new light positions. With a sufficiently large number
of epochs, an optimal light position is learnable.

An increase in the output resolution is another area of future research. A dedicated
upscaling network is a possibility. With this technique, the complex estimation
network is not increased in size further.

78

A. Appendix

Results

The results follow on the next page.

79

Appendix A. Appendix

(a
)C

on
vo

lu
ti

on
al

N
eu

ra
lN

et
w

or
k

(b
)G

en
er

at
iv

e
A

dv
er

sa
ri

al
N

et
w

or
k

Fi
gu

re
A

.1
.:

Pa
in

te
d

br
ic

k
w

al
l.

T
he

le
ft

ha
lf

of
ea

ch
pa

ir
is

th
e

gr
ou

nd
tr

ut
h

an
d

th
e

ri
gh

ti
s

th
e

ge
ne

ra
te

d
sa

m
pl

e.

80

(a
)C

on
vo

lu
ti

on
al

N
eu

ra
lN

et
w

or
k

(b
)G

en
er

at
iv

e
A

dv
er

sa
ri

al
N

et
w

or
k

Fi
gu

re
A

.2
.:

G
ra

in
y

st
ee

l.
T

he
le

ft
ha

lf
of

ea
ch

pa
ir

is
th

e
gr

ou
nd

tr
ut

h
an

d
th

e
ri

gh
ti

s
th

e
ge

ne
ra

te
d

sa
m

pl
e.

81

Appendix A. Appendix

(a
)C

on
vo

lu
ti

on
al

N
eu

ra
lN

et
w

or
k

(b
)G

en
er

at
iv

e
A

dv
er

sa
ri

al
N

et
w

or
k

Fi
gu

re
A

.3
.:

C
hr

is
tm

as
Sw

ea
te

r.
Th

e
le

ft
ha

lf
of

ea
ch

pa
ir

is
th

e
gr

ou
nd

tr
ut

h
an

d
th

e
ri

gh
ti

s
th

e
ge

ne
ra

te
d

sa
m

pl
e.

82

(a
)C

on
vo

lu
ti

on
al

N
eu

ra
lN

et
w

or
k

(b
)G

en
er

at
iv

e
A

dv
er

sa
ri

al
N

et
w

or
k

Fi
gu

re
A

.4
.:

Br
ic

k
w

al
l.

T
he

le
ft

ha
lf

of
ea

ch
pa

ir
is

th
e

gr
ou

nd
tr

ut
h

an
d

th
e

ri
gh

ti
s

th
e

ge
ne

ra
te

d
sa

m
pl

e.

83

Appendix A. Appendix

(a
)C

on
vo

lu
ti

on
al

N
eu

ra
lN

et
w

or
k

(b
)G

en
er

at
iv

e
A

dv
er

sa
ri

al
N

et
w

or
k

Fi
gu

re
A

.5
.:

Tr
ee

ba
rk

.T
he

le
ft

ha
lf

of
ea

ch
pa

ir
is

th
e

gr
ou

nd
tr

ut
h

an
d

th
e

ri
gh

ti
s

th
e

ge
ne

ra
te

d
sa

m
pl

e.

84

(a
)C

on
vo

lu
ti

on
al

N
eu

ra
lN

et
w

or
k

(b
)G

en
er

at
iv

e
A

dv
er

sa
ri

al
N

et
w

or
k

Fi
gu

re
A

.6
.:

O
ld

w
oo

d
pl

an
ks

.T
he

le
ft

ha
lf

of
ea

ch
pa

ir
is

th
e

gr
ou

nd
tr

ut
h

an
d

th
e

ri
gh

ti
s

th
e

ge
ne

ra
te

d
sa

m
pl

e.

85

Appendix A. Appendix

(a
)C

on
vo

lu
ti

on
al

N
eu

ra
lN

et
w

or
k

(b
)G

en
er

at
iv

e
A

dv
er

sa
ri

al
N

et
w

or
k

Fi
gu

re
A

.7
.:

Le
at

he
r.

T
he

le
ft

ha
lf

of
ea

ch
pa

ir
is

th
e

gr
ou

nd
tr

ut
h

an
d

th
e

ri
gh

ti
s

th
e

ge
ne

ra
te

d
sa

m
pl

e.

86

Fi
gu

re
A

.8
.:

Tr
ee

Ba
rk

sa
lie

nc
y

m
ap

s

87

Appendix A. Appendix

Fi
gu

re
A

.9
.:

M
et

al
sa

lie
nc

y
m

ap
s

88

Bibliography

[1] Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. Two-shot svbrdf capture for
stationary materials. ACM Trans. Graph., 34(4):110:1–110:13, July 2015. ISSN
0730-0301. doi: 10.1145/2766967. URL http://doi.acm.org/10.1145/2766967.

[2] Léon Bottou. On-line learning in neural networks. chapter On-line Learning
and Stochastic Approximations, pages 9–42. Cambridge University Press, New
York, NY, USA, 1998. ISBN 0-521-65263-4. URL http://dl.acm.org/citation.
cfm?id=304710.304720.

[3] Brent Burley. Physically based shading at disney. In SIGGRAPH 2012, volume
Course Notes, 2012.

[4] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics.
ACM Transactions on Graphics, 1(1):7–24, jan 1982. doi: 10.1145/357290.357293.

[5] Yue Dong, Jiaping Wang, Xin Tong, John Snyder, Yanxiang Lan, Moshe Ben-
Ezra, and Baining Guo. Manifold bootstrapping for svbrdf capture. In ACM
SIGGRAPH 2010 Papers, SIGGRAPH ’10, pages 98:1–98:10, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0210-4. doi: 10.1145/1833349.1778835. URL
http://doi.acm.org/10.1145/1833349.1778835.

[6] EN ISO 11664-4. Colorimetry - part 4: Cie 1976 l*a*b* colour space. Standard,
2011.

[7] Wolfgang Engel. ShaderX7: Advanced Rendering Techniques. Charles River Media,
2009.

[8] Dan B Goldman, Brian Curless, Aaron Hertzmann, and Steven M Seitz. Shape
and spatially-varying BRDFs from photometric stereo. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(6):1060–1071, jun 2010. doi:
10.1109/tpami.2009.102.

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversar-
ial nets. In Proceedings of the 27th International Conference on Neural Information Pro-
cessing Systems - Volume 2, NIPS’14, pages 2672–2680, Cambridge, MA, USA, 2014.
MIT Press. URL http://dl.acm.org/citation.cfm?id=2969033.2969125.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep

89

http://doi.acm.org/10.1145/2766967
http://dl.acm.org/citation.cfm?id=304710.304720
http://dl.acm.org/citation.cfm?id=304710.304720
http://doi.acm.org/10.1145/1833349.1778835
http://dl.acm.org/citation.cfm?id=2969033.2969125

Bibliography

into rectifiers: Surpassing human-level performance on imagenet classification.
CoRR, abs/1502.01852, 2015. URL http://arxiv.org/abs/1502.01852.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015. URL http://
arxiv.org/abs/1512.03385.

[12] Eric Heitz. Understanding the masking-shadowing function in microfacet-
based brdfs. Journal of Computer Graphics Techniques (JCGT), 3(2):48–107, June
2014. ISSN 2331-7418. URL http://jcgt.org/published/0003/02/03/.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR, 2015.

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks.

[15] M J. D. Powell. A view of algorithms for optimization without derivatives.
Mathematics TODAY, 43, 01 2007.

[16] James T. Kajiya. The rendering equation. In Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’86,
pages 143–150, New York, NY, USA, 1986. ACM. ISBN 0-89791-196-2. doi:
10.1145/15922.15902. URL http://doi.acm.org/10.1145/15922.15902.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems - Vol-
ume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc. URL
http://dl.acm.org/citation.cfm?id=2999134.2999257.

[19] Sebastien Lagarde and Charles De Rousiers. Moving frostbite
to pbr. In Proc. Physically Based Shading Theory Practice, 2014.
URL https://media.contentapi.ea.com/content/dam/eacom/frostbite/
files/s2014-pbs-frostbite-slides.pdf.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.
ISSN 0018-9219. doi: 10.1109/5.726791.

[21] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Modeling surface appearance
from a single photograph using self-augmented convolutional neural networks.
ACM Transactions on Graphics, 36(4):1–11, jul 2017. doi: 10.1145/3072959.3073641.

[22] Feng Lu, Lei He, Shaodi You, Xiaowu Chen, and Zhixiang Hao. Identifying
surface BRDF from a single 4-d light field image via deep neural network.

90

http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://jcgt.org/published/0003/02/03/
http://doi.acm.org/10.1145/15922.15902
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2014-pbs-frostbite-slides.pdf
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2014-pbs-frostbite-slides.pdf

Bibliography

IEEE Journal of Selected Topics in Signal Processing, 11(7):1047–1057, oct 2017. doi:
10.1109/jstsp.2017.2728001.

[23] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities
improve neural network acoustic models. 2013.

[24] Stephen R. Marschner and Donald P. Greenberg. Inverse lighting for photogra-
phy. 08 1998.

[25] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. A
data-driven reflectance model. ACM Transactions on Graphics, 22(3):759–769,
July 2003.

[26] Yasuhiro Mukaigawa, Kohei Sumino, and Yasushi Yagi. Rapid BRDF measure-
ment using an ellipsoidal mirror and a projector. IPSJ Transactions on Computer
Vision and Applications, 1:21–32, 2009. doi: 10.2197/ipsjtcva.1.21.

[27] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In ICML, 2010.

[28] Fred E. Nicodemus. Directional reflectance and emissivity of an opaque surface.
Applied Optics, 4(7):767, jul 1965. doi: 10.1364/ao.4.000767.

[29] Jannik Boll Nielsen, Henrik Wann Jensen, and Ravi Ramamoorthi. On optimal,
minimal BRDF sampling for reflectance acquisition. ACM Transactions on
Graphics, 34(6):1–11, oct 2015. doi: 10.1145/2816795.2818085.

[30] Jannik Boll Nielsen, Henrik Aanæs, Jeppe Revall Frisvad, and Knut Conradsen.
On Practical Sampling of Bidirectional Reflectance. PhD thesis, Technical University
of Denmark (DTU), 2016.

[31] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. ArXiv e-prints, November
2015.

[32] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework for
inverse rendering. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques - SIGGRAPH '01. ACM Press, 2001. doi:
10.1145/383259.383271.

[33] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photographic
tone reproduction for digital images. ACM Trans. Graph., 21(3):267–276, July
2002. ISSN 0730-0301. doi: 10.1145/566654.566575. URL http://doi.acm.org/
10.1145/566654.566575.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. CoRR, 2015.

[35] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project Para.

91

http://doi.acm.org/10.1145/566654.566575
http://doi.acm.org/10.1145/566654.566575

Bibliography

Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory, 1957.
URL https://books.google.de/books?id=P_XGPgAACAAJ.

[36] Frank Rosenblatt and C. Van Der Malsburg. Principles of neurodynamics:
Perceptrons and the theory of brain mechanisms. In Brain Theory, pages 245–248.
Springer Berlin Heidelberg, 1986. doi: 10.1007/978-3-642-70911-1_20.

[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, oct 1986.
doi: 10.1038/323533a0.

[38] Christophe Schlick. An inexpensive brdf model for physically-based rendering.
Computer Graphics Forum, 13:233–246, 1994.

[39] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529:484–503, 2016. URL http:
//www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

[40] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den
Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of go
without human knowledge. Nature, 550:354–, October 2017. URL http://dx.
doi.org/10.1038/nature24270.

[41] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014. URL http:
//arxiv.org/abs/1409.1556.

[42] Leslie N. Smith. No more pesky learning rate guessing games. CoRR,
abs/1506.01186, 2015. URL http://arxiv.org/abs/1506.01186.

[43] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. Striving for simplicity: The all convolutional net. CoRR, 2014.

[44] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

[45] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014. URL
http://arxiv.org/abs/1409.4842.

92

https://books.google.de/books?id=P_XGPgAACAAJ
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1506.01186
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1409.4842

Bibliography

[46] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normaliza-
tion: The missing ingredient for fast stylization. CoRR, abs/1607.08022, 2016.
URL http://arxiv.org/abs/1607.08022.

[47] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance.
Microfacet models for refraction through rough surfaces. In Proceedings of
the 18th Eurographics Conference on Rendering Techniques, EGSR’07, pages 195–
206, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.
ISBN 978-3-905673-52-4. doi: 10.2312/EGWR/EGSR07/195-206. URL http:
//dx.doi.org/10.2312/EGWR/EGSR07/195-206.

[48] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale structural similarity for
image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals,
Systems & Computers, 2003, volume 2, pages 1398–1402 Vol.2. IEEE, 2003. doi:
10.1109/acssc.2003.1292216.

[49] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, apr 2004. doi: 10.1109/tip.2003.819861.

[50] Gregory J. Ward. Measuring and modeling anisotropic reflection. In Proceedings
of the 19th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’92, pages 265–272, New York, NY, USA, 1992. ACM. ISBN 0-
89791-479-1. doi: 10.1145/133994.134078. URL http://doi.acm.org/10.1145/
133994.134078.

[51] Ye Yu and William A. P. Smith. Pvnn: A neural network library for photometric
vision. In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[52] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image
restoration with neural networks. IEEE Transactions on Computational Imaging, 3
(1):47–57, mar 2017. doi: 10.1109/tci.2016.2644865.

[53] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. CoRR,
abs/1703.10593, 2017. URL http://arxiv.org/abs/1703.10593.

93

http://arxiv.org/abs/1607.08022
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
http://doi.acm.org/10.1145/133994.134078
http://doi.acm.org/10.1145/133994.134078
http://arxiv.org/abs/1703.10593

	Introduction
	Problem Statement
	Related Research

	Background
	Hardware
	Machine learning
	Single-Layer Perceptron
	Multi-Layer Perceptron
	Backpropagation
	Activation Functions
	Pooling and Stride
	Loss Functions
	Optimizer
	Convolutional Neural Networks
	Generative Adversarial Networks

	Image Synthesis
	Rendering Equation
	Bidirectional Reflectance Distribution Function
	Point Light Evaluation

	Implementation
	Camera Pose Estimation
	Bidirectional Reflectance Distribution Function Rendering
	Dataset
	Augmentation
	Rendering

	Convolutional Neural Network
	Architecture
	Loss Formulation
	Optimization
	Results

	Generative Adversarial Network
	Architecture
	Loss Formulation
	Optimization
	Results

	Analysis

	Discussion
	Conclusion
	Future work

	Appendix

