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Figure 1: The proposed neural network predicts spatially-varying BRDF from five input photographs with fixed viewing po-
sition and varying light positions. From left to right: input positions, rendered predictions and predicted parameters for three
examples.

Abstract
Surface parameter estimation is an essential field in computer games and movies. An exact representation of a
real-world surface allows for a higher degree of realism. Capturing or artistically creating these materials is a
time-consuming process. We propose a method which utilizes an encoder-decoder Convolutional Neural Network
(CNN) to extract parameters for the Bidirectional Reflectance Distribution Function (BRDF) automatically from a
sparse sample set. This is done by implementing a differentiable renderer, which allows for a loss backpropagation
of rendered images. This photometric loss is essential because defining a numerical BRDF distance metric is
difficult. A second loss is added, which compares the parameters maps directly. Therefore, the statistical properties
of the BRDF model are learned, which reduces artifacts in the predicted parameters. This dual loss principal
improves the result of the network significantly. Opposed to previous means this method retrieves information of
the whole surface as spatially varying BRDF (SVBRDF) parameters with a sufficiently high resolution for intended
real-world usage. The capture process for materials only requires five known light positions with a fixed camera
position. This reduces the scanning time drastically, and a material sample can be obtained in seconds with an
automated system.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

With the advance of processing power and improvements
in rendering algorithms, movies and video games approach
photorealism. The 3D models of characters and scenes are
highly detailed, and the behavior of light is recreated real-

istically in rendering algorithms. To achieve this high level
of realism, the correct behavior of surfaces is critical. These
materials are often captured using photogrammetry or with
a Bidirectional Texturing Function (BTF) measurement de-
vice. Either way is a time-consuming process.
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Figure 2: Overview of the network architecture. The BRDF parameters from the dataset are rendered with the five fixed view
and light positions. Additionally, the parameters are rendered during the training with ten random view and light positions. The
five images with fixed positions are passed to the network. Here, the images are first processed in three 3D convolution layers
(green) reducing the depth dimension from the five stacked images, and the result is then passed to the U-Net (blue). Finally, the
predictions are rendered with the light and view positions from the random images in a rendering layer. An error is calculated
between the ground truth and re-rendered predicted loss images. Additionally, the predicted BRDF parameters are compared
to the ground truth maps. The loss from both errors is combined.

However, artists are capable of reproducing information
about reflective behavior from a few images under differ-
ent light conditions by leveraging their previous knowledge
about similar objects. At the same time, neural networks are
reaching human performance in many areas such as speech
or image recognition in the recent years [HZRS15,SSS∗17].
We present a neural network which predicts SVBRDF pa-
rameters for isotropic materials from multiple input images.
The Cook-Torrance model [CT82] with influences from the
Disney BRDF [Bur12] is selected as the underlying BRDF
model. The key contributions of this work are:

• BRDF estimation from five input images with a fixed
viewing angle but varying light positions with an encoder-
decoder CNN

• A network architecture with a dual loss defined as a:

– Loss against rendered images from random view and
light positions using a differentiable renderer, which is
used to define a Cook-Torrance specific loss term

– Loss against the ground truth parameters, which learns
statistical properties of commonly used BRDF param-
eter sets and thus reduces artifacts in the predictions

2. Related Work

The concept of decreasing measurement time for BRDFs
is an active area of research. Several approaches achieving
a high speedup are developed recently [AWL15, LDPT17,
NJR15]. As materials are often related to each other, sev-
eral methods which leverage this property are developed.

Nielsen et al. [NJR15] perform a Principal Component Anal-
ysis (PCA) on the MERL dataset [MPBM03] to search for
optimal sampling positions and use this knowledge to recon-
struct the BRDF from the sparse sampling positions. The re-
sults of this work are homogeneous BRDF parameters.

Aittala et al. [AWL15] use the property that materials are
often stationary, which means they consist of repeating pat-
terns. An image with a flash and one without are taken and
divided into a grid. A single tile is fitted against the other
tiles, and thus multiple half vectors between view and light
are calculated. The result is an SVBRDF from a small low-
resolution area of the material.

Li et al. [LDPT17] are the first, who explore the possibil-
ity of using CNNs for this problem. They use an encoder-
decoder CNN with skip connections to estimate BRDF pa-
rameters from a single flash image. The result of this method
is spatially varying information about the diffuse and normal
parameters and homogeneous parameters for the roughness
and specular information.

3. Network Architecture

The general task in our framework is to extract an SVBRDF
from five images of a surface with different lighting condi-
tions. The used BRDF is an analytical Cook-Torrance mi-
crofacet model [CT82] in combination with the diffuse term
and the metallic property of the Disney BRDF [Bur12]. In
this case, the BRDF is represented by its parameters, which
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Figure 3: Comparison for a predicted rock material. The "Parameter Only"-loss is calculated only on the parameter maps
and the "Rendering Only"-loss is calculated on the rendered loss images. The dual loss is a joined loss between a photometric
rendering loss and the direct parameter loss.

are stored in a multichannel image. In general, this is a trans-
formation between different styles of images. The U-net ar-
chitecture from Ronneberger et al. [RFB15] is a well-suited
architecture for these kinds of problems [IZZE, ZLW18].

3.1. Dual Loss Formulation

When designing a network architecture, the error metric is
an important part. Only when done correctly, the predic-
tions fulfill the desired purpose. Since we want to use the
predicted BRDF parameters under arbitrary light conditions
and viewing angles, we have two main constraints: First, the
rendered prediction should be plausible and match the input
data. Second, The predicted parameters should be similar to
ones generated by an artist. Therefore, we propose a dual
loss, which encompasses these constraints.

Rendering Loss This loss term is based on the Mean Ab-
solute Error (MAE) between a ground truth and predicted
rendered image. To backpropagate the error to the network
weights, we use a differentiable render, which is directly
implemented with Tensorflow operations. The renderer gen-
erates images using the predicted parameters from ten ran-
dom view and light positions. For five of these positions, a
sharp highlight is enforced by first selecting the light posi-
tion and then mirroring the light ray at the surface normal
from a random point on the surface. The ten ground truth
and re-rendered images are transformed with the formula:

log(x+1). Thereby high specular peak values of the render-
ings are reduced.

Parameter Loss The rendering loss can introduce artifacts
from specular highlights, due to lost and hard to recover in-
formation in these areas. This violates both constraints by
neither matching artists generated parameter, nor matching
the input and being plausible. By calculating the MAE be-
tween the predicted BRDF parameters and the ground truth,
the network learns the statistical properties of commonly
used BRDFs.

3.2. Encoder-Decoder Network

The U-Net architecture is the basis of the network design
with inspiration from the specific implementation details of
Isola et al. [IZZE]. As seen in Figure 2 the input of the net-
work consists of five low dynamic range images. The res-
olution of the input and output is 512 × 512. The output
produces an image with eight channels corresponding to the
SVBRDF parameters: three for the RGB basecolor, three for
the normal vector, one for the roughness and one for the
metallic mask. The metallic mask is used to split the base
color in diffuse and specular color.

To extend the original implementation of Ronneberger et
al. [RFB15] and Isola et al. [IZZE] to multiple inputs, we
stack our five input images in a depth dimension. Three 3D
convolution layers with a kernel size of three are used to
merge the inputs images with a stride of two in the depth
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dimension. The feature counts for each of these convolutions
are 16, 32, 32.

The merged input is now passed through nine convolu-
tion layers, which perform the downsampling, followed by
nine transposed convolution layers for upsampling. Each of
the encoder layers decreases the spatial resolution but in-
creases the feature size, and each decoder layer the other way
around. This hourglass shape forces the encoder to compress
the information into a global feature vector. Additional skip
connections are added between encoder and decoders layers
of matching size to reconstruct spatial details [RFB15].

In detail, the encoder outputs 64, 128, 256, and 512 fea-
tures in the following layers. The downsampling is imple-
mented with a stride of two in the convolutions. The decoder
uses the same feature outputs but in reversed order. A stride
of two in the transposed convolutions is used for upsampling.
In the four coarsest layer of the decoder, a dropout is applied.
A kernel size of four, batch normalization and a leaky ReLu
with a 0.2 weight are used throughout the encoder-decoder
network. To output, the BRDF parameter the feature size of
the last transposed convolution layer is set to eight and the
sigmoid nonlinearity is used to achieve the [0, 1] range.

4. Training and Dataset

The required training data is gathered from the fol-
lowing libraries: textures.com, cgbookcase.com,
cc0textures.com, freepbr.com, poliigon.com,
and 3d-wolf.com. These libraries provide 815 high-
resolution samples. Each sample is randomly rotated, scaled,
and cropped to 512× 512 pixels. Additionally, the hue, sat-
uration, brightness, and contrast is adjusted randomly. Af-
terward, every material is blended with another material.
The total number of samples in the dataset is 40750 sam-
ples afterward. The network is trained on this dataset with
a batch size of four in 249.000 steps, and the Adam opti-
mizer [KB14] is used with a learning rate of 0.001 for the
first 100 epochs and 0.0001 afterward. The training takes
three days on a single Nvidia 1080 TI.

5. Evaluation

For evaluation, a small dataset of 29 handpicked, chal-
lenging materials is created. Over the whole test set, the
RMSE (Root-Mean-Square-Error) is 0.0808 for the basec-
olor, 0.0201 for the normal, 0.0343 for the roughness, and
0.0629 for the metallic parameter map. As seen the network
is capable of estimating normal maps with near-perfect ac-
curacy. In Figure 3 a rock material is compared to the ground
truth with both single losses and the dual loss. Here it is visi-
ble, that the "Rendering Only"-loss is introducing errors due
to the difficulty of attributing specular behavior for a specific
map. This is especially noticeable in the metallic parameter
map. The "Parameter Only"-loss is not displaying this prob-
lem. The combination of both loss formulations produces the

best visual and error metric results. The Mean Squared Error
for each map and loss are annotated in Figure 3.

6. Conclusion

We propose a framework for automated BRDF estimation
which only depends on five input images with a fixed view-
ing position. An error metric which takes the rendering con-
text into account is added with a differentiable renderer. The
resulting SVBRDF parameter maps are estimated at a rea-
sonably high resolution and can be used in video games and
movie productions. Due to the low number of input images
and the fixed viewing position, the capture time is low, al-
lowing simple setups without motorized parts. This allows
designing different scanning devices in the future.
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