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Figure 1: Practical SVBRDF and shape estimation. Sample two-shot input and the corresponding estimates for SVBRDF
(albedo, specularity, roughness) and shape (depth and normals). The novel re-renders are animated and show a moving view
and light. We recommend Adobe Acrobat or Okular for viewing. Samples are taken from [5].

Abstract
Capturing the shape and spatially-varying appearance

(SVBRDF) of an object from images is a challenging task
that has applications in both computer vision and graph-
ics. Traditional optimization-based approaches often need
a large number of images taken from multiple views in a
controlled environment. Newer deep learning-based ap-
proaches require only a few input images, but the recon-
struction quality is not on par with optimization techniques.
We propose a novel deep learning architecture with a stage-
wise estimation of shape and SVBRDF. The earlier predic-
tions guide each estimation, and a joint refinement network
later refines both SVBRDF and shape. We follow a prac-
tical mobile image capture setting and use unaligned two-
shot flash and no-flash images as input. Both our two-shot
image capture and network inference can run on mobile
hardware. We also create a large-scale synthetic train-
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ing dataset with domain-randomized geometry and realis-
tic materials. Extensive experiments on both synthetic and
real-world datasets show that our networks trained on a
synthetic dataset can generalize well to real-world images.
Comparisons with recent approaches demonstrate the supe-
rior performance of the proposed approach.

1. Introduction
The estimation of intrinsic attributes of a scene such as

shape and reflectance of objects and the illumination con-
dition of the scene is often called as an inverse rendering
problem in computer vision [52, 46, 24], and has been a
core of many applications such as relighting of images [47],
photo-realistic mixed reality [40], and automatic creation of
assets for content creation tasks [4].

In this work, we are interested in the automatic estima-
tion of the shape and appearance of the object in a scene
from only two images. In particular, we represent the shape
of the object with a depth map and the appearance as a Bidi-
rectional Reflectance Distribution Function (BRDF) [44]. A
BRDF describes the low-level material properties of an ob-
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ject that defines how light is reflected at any given point
on an object surface. One of the most popular parametric
models [12] represents the diffuse and specular properties
and the roughness of the surfaces. Since the material prop-
erties can vary across the surface, one has to estimate the
BRDF at each image pixel for a more realistic appearance
(i.e., spatially-varying BRDF (SVBRDF)).

As the BRDF is dependent on view and light directions
and estimating depth from a single 2D image is an ambigu-
ous task, multi-view setups improve the estimation accu-
racy of both shape [51] and BRDF [40]. Predicting shape
and BRDF from only a few images is still very challeng-
ing. For shape estimation, the advances in deep learning-
based depth estimation allow us to estimate the depth of
a single [17, 26], or a pair of images [59] efficiently. As
monocular depth estimation is not as accurate as multi-view
approaches, we exploit shading cues on the surface to dis-
ambiguate the geometric shape [6, 66] in our approach.

We propose a neural network-based approach to estimate
SVBRDF and shape of an object along with the illumination
from given two-shot images: flash and no-flash pairs. Some
recent deep learning approaches [14, 35, 36] for BRDF esti-
mation use only a single flash image as input. Flash images
often have harsh reflective highlights where the input pixel
information is saturated in non-HDR images.

Li et al. [36] uses a single input image and estimates
shape and part of the BRDF, such as diffuse albedo and the
roughness while ignoring the specular color. In this work,
we use flash and no-flash image pairs as input allowing the
network to access pixel information from the no-flash image
when the corresponding pixels are saturated in the flash im-
age. We focus on practical utility: Our input capture setup
follows a real-world scenario where the two-shot images are
consecutively taken using a mobile phone camera in burst
capture. The system is designed to tackle the misalignment
between the two-shot images due to camera shake.

A pivotal challenge for any learning approach is the need
for training data. We tackle this issue by creating a large-
scale synthetic dataset. Flash and no-flash images are ren-
dered using high-quality, human-authored SVBRDF tex-
tures that are applied to synthetic geometry generated by
domain randomization [56] of geometric shapes and back-
grounds. Our networks trained on this synthetic data gener-
alize well to real-world object images.

Another key challenge in shape and SVBRDF estima-
tion is the problem of ambiguity. For example, a darker
region in an image could be created by its material color
being dark, the area slightly shadowed due to its shape, or
the illumination at that spot being darker. We tackle this
ambiguity by using a cascaded approach, where separate
neural networks are used to estimate shape (depth), illumi-
nation, and SVBRDF. Specifically, we first estimate depth
and normals using a geometry estimation network. Then

the illumination is approximated, followed by SVBRDF re-
construction. Each step is guided by the estimates of the
previous networks. Finally, shape and SVBRDF are op-
timized jointly using a refinement network. Each task is
implemented by specialized network architectures. Empiri-
cally, this cascaded regression approach works reliably bet-
ter compared to a single-step joint estimation. As a favor-
able side-effect of this cascaded approach, the size of each
network is small compared to a large joint estimation net-
work. This allows the inference networks to even operate on
a mobile device. Coupled with two-shot mobile capturing,
this presents a highly practical application.

Quantitative analysis based on a synthetic dataset com-
prising of realistic object shapes and SVBRDFs demon-
strates that our approach produces more accurate estimates
of shape and SVBRDF compared to baseline approaches.
We also qualitatively demonstrate the applicability of our
approach on a real-world two-shot dataset [5].

2. Related work
The literature on object SVBRDF and/or shape estima-

tion is vast. Here, we only discuss the representative works
that are related to ours.

BRDF Estimation An exhaustive sampling of each BRDF
dimension demands long acquisition times. Several pro-
posed methods focus on reducing acquisition time [28, 3,
16]. These methods introduce capture setups and optimiza-
tion techniques that reduce the number of images required
to reconstruct high-quality SVBRDF. Recently, several at-
tempts [14, 32, 35, 2, 4] reconstruct the SVBRDF on flat
surfaces with one or two flash images. These approaches
leverage neural networks trained on large amounts of data
and resolve the problem of ambiguity to some extent by
learning the statistical properties of BRDF parameters.

For a joint estimation of shape and shading, separate op-
timization steps for shape and shading are common [27, 41,
19, 7]. Lensch et al. [27] introduce Lumitexels, which stack
previously acquired shape information with the luminance
information from the input images, to guide the BRDF esti-
mation and to reduce ambiguities in the optimization. Com-
pared to a joint estimation, fewer local minima are found,
and the optimization is more robust. Recently, the task of
predicting the shape and BRDF of objects or scenes is also
addressed using deep learning models [36, 52]. Li et al. [36]
predict the shape and BRDF of objects from a single flash
image using an initial estimation network followed by sev-
eral cascaded refinement networks. Here, the BRDF con-
sists of diffuse albedo and specular roughness but lacks the
specular albedo. Specularity is, however, essential in re-
rendering metallic objects, for example.

Compared to Li et al. [36], our method additionally esti-
mates the SVBRDF with specular albedo. In comparison to
flat surface SVBRDF estimation [14, 35, 2, 4], our method
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Figure 2: Cascaded Network. Overview of the inference pipeline for shape, illumination and SVBRDF estimation.

handles full objects with shape from any view position. Ad-
ditionally, due to our unaligned two-shot setup, saturated
flash highlights are better compensated, while still provid-
ing the same one-button press capture experience for the
user, due to our mobile capture scenario.

Intrinsic Imaging Intrinsic imaging is the task of decom-
posing an image of a scene into reflectance (diffuse albedo),
and shading [8, 7, 39, 54]. With the advance in deep learn-
ing, the problem of separating shape, reflectance, and shad-
ing is tackled from labeled data [29, 42, 53], unlabeled [34]
and partially labeled data [67, 33, 43, 9]. Due to the very
simplistic rendering model, the use cases are limited com-
pared to our SVBRDF estimation setup, which can be used
for general re-rendering in new light scenarios.

Shape Estimation One can obtain high-quality depth from
stereo images, but the problem of monocular depth estima-
tion is quite challenging. Monocular depth estimation is
predominantly tackled with deep learning [62, 38, 31, 18,
50, 26] in the recent years. This problem is especially chal-
lenging as no absolute scale is known from single images,
and the depth cues need to be resolved by shading informa-
tion such as the quadratic light fall-off [37].

3. Methods
As briefly discussed in the introduction, to tackle the

problem of ambiguity in shape and SVBRDF estimation,
we propose a novel cascaded network design for shape,
illumination, and SVBRDF predictions. Fig. 2 shows an
overview of our cascaded network.
Problem Setup Our network takes two-shot object images
(flash and no-flash) with the corresponding foreground ob-
ject mask and estimates shape and SVBRDF. We also es-
timate illumination as a side-prediction to help shape and
SVBRDF prediction. The two-shot images can be slightly
misaligned to support practical image capture with a hand-
held camera. The object mask allows us to evaluate only

the pixels of the object in the flash image and is easily gen-
erated with GrabCut [49]. The object shape is represented
as depth and normal at each pixel. The depth map provides
a rough shape of the object, while the normal map mod-
els local changes more precisely. This shape representa-
tion is commonly used in various BRDF estimation meth-
ods [36, 41]. We use the Cook-Torrence model [12] to rep-
resent the BRDF at each pixel with diffuse albedo (3 pa-
rameters), specular albedo (3), and roughness (1). Similar
to [61, 30], we estimate the environment illumination with
24 spherical Gaussians.

Network Overview and Motivation In order to tackle the
shape/SVBRDF ambiguity, we take the inspiration from tra-
ditional optimization techniques [27, 41], which iteratively
minimize a residual and alternate between optimizing for
shape and/or reflectance. Thus, separate networks are used
for shape, illumination, and SVBRDF estimation in a cas-
caded as well as an iterative manner. Predictions from ear-
lier stages of the networks in the cascade are used as inputs
to later networks to guide network predictions to better solu-
tions. In addition, the scene is re-rendered with the current
estimates, and refined further using the residual image.

Since flash and no-flash images are slightly misaligned,
shape estimation is less challenging compared to SVBRDF
estimation. Mis-alignment in pixels, as well as pixel differ-
ences between two-shot images [37], are a good indicator of
object depth. Thus, we first predict depth and normals using
a specialized merge convolutional network followed by a
shape-guided illumination estimation. Then, the SVBRDF
is predicted with the current estimates of shape and illumi-
nation as additional input. Finally, after computing a resid-
ual image, we refine both shape and SVBRDF using a joint
refinement network. Refer to the supplementary for net-
work architecture details.
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3.1. Shape Estimation with Merge Convolutions
Since the camera parameters are unknown and the two-

shot images have a minimal baseline, traditional structure-
from-motion or stereo solutions are not useful for dense
depth estimation. The shape estimation needs to rely on the
unstructured perspective shift as well as pixel differences
between flash and no-flash images. In order to tightly inte-
grate information from both the images, we design a spe-
cialized convolutional network for shape estimation.

For depth and normal map prediction, we use a U-net
like encoder-decoder architecture [48]. Instead of standard
convolution blocks, we propose to use novel merge con-
volution blocks (MergeConv). We concatenate the object
mask with each of the two-shot input images as input to the
network. Fig. 3 illustrates the MergeConv block. Both the
input images or their intermediate features are separately
processed by 2D convolutions (Conv2D). The outputs of
each Conv2D operation are concatenated in channels with
the merged output from the previous MergeConv layer and
is processed with another Conv2D operation. Inspired by
residual connections in ResNet [20], we add the Conv2D
outputs as indicated in Fig. 3. We use 4 MergeConv blocks
for the encoder and also 4 for the decoder. During encod-
ing, max pooling for 2× spatial downsampling is used. For
each MergeConv in the decoder, we use 2× nearest neigh-
bor upsampling. The final depth and normal map estimates
are produced using a separate 2D convolution, followed by
a sigmoid activation. The rationale behind this MergeConv
architecture is to keep separating the process of pathways
for both the input images while exchanging (merging) the
information between them using a third pathway in the mid-
dle. We believe that information in both input images is
essential for shape reasoning, and this architecture helps to
keep the features from each of the images intact throughout
the network. Empirically, we observe reliably better shape
predictions with this architecture compared to a standard U-
net with a similar number of network parameters.

Training losses are based on the L2 distance between
ground-truth (GT) and predicted depths, Ldepth

2 , as well as
the angular distance between GT and predicted normals,
Lnormals

angular . Besides, we use a new consistency loss between
the predicted normal n and a normal n∗ derived from the
depth information d, which enforces that the predicted nor-
mals follow the curvature of the shape:

Lnormals/depth
consistency =

n

‖n‖ −
n∗

‖n∗‖ , (1)

n∗ =
[
Od 2 1

width

]T
=
[
∂d
∂x

∂d
∂y 2 1

width

]T
, (2)

The normal n∗ is derived from the depth map using gradi-
ents along horizontal (x) and vertical (y) directions. The
z component can be considered a strength factor which is
derived from the image width. The total loss is a weighted
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Figure 3: Merge convolutions. The merge convolution pro-
vides separate pathways for the two-shot inputs and merges
the information in a third path.

combination of the three losses: Ldepth
2 + Lnormals

angular + 0.5 ×
Lnormals/depth

consistency .

3.2. Shape Guided Illumination Estimation
To guide SVBRDF predictions, we also estimate the en-

vironment illumination. Hereby, the BRDF prediction can
consider environment light and reduce additional highlights
as well as improve the albedo colors and intensities. The il-
lumination is represented with 24 spherical Gaussians (SG),
where each SG is defined by amplitude, axis, and sharp-
ness. However, we only estimate the amplitude and set the
axis and sharpness to cover a unit sphere. The estimation
thus only estimates the amplitudes of the SG resulting in
24 RGB values. As the environment illumination can reach
very high values and the flash and no-flash input images are
in LDR, SG amplitudes are constrained to values between
0 and 2. Refer to the supplementary for environment map
samples and their SG representations.

We use a small convolutional encoder network followed
by fully-connected layers for illumination estimation. The
network receives two-shot images, object mask, and the pre-
viously predicted depth and normals as input. As illumina-
tion is reflected on the surface towards the viewer, the previ-
ously estimated shape information helps in better illumina-
tion estimations. To train the illumination network, we use
the L2 distance between predicted and ground-truth SGs as
the loss function.

3.3. Guided SVBRDF Estimation
SVBRDF estimation becomes a less ambiguous task

when conditioned on known object shape and environment
illumination. Thus, together with two-shot images, the
previously estimated depth, normals, and illumination are
used as input to the SVBRDF network to predict diffuse
albedo and specular color as well as surface roughness
at each pixel. Following recent work on BRDF estima-
tion [32, 35, 14], the U-net architecture [48] is used in our
SVBRDF network.
Differentiable Rendering We develop a differentiable ren-
dering module to re-render the object flash image from the
estimated depth, normals, illumination, and SVBRDF. At
each surface point, the renderer evaluates the direct light
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from the flash-light source and the estimated environment
illumination and integrates it with the BRDF to compute
the reflected light [23]. Fast evaluation of the environment
illumination is achieved by representing the illumination as
well as the BRDF model as spherical Gaussians (SG) [60].
The product of two SGs is an SG, and the integral of an SG
has a closed-form solution that is inexpensive to compute.

Loss Functions for SVBRDF Network The SVBRDF net-
work is trained using a combination of different loss terms:
the mean absolute error (MAE) between GT and the pre-
dicted SVBRDF parameters as well as a loss between a
synthetic direct illumination only flash GT image and re-
rendered direct illumination flash image. The rendering
loss is back-propagated through the differentiable renderer
to update the SVBRDF network. As rendering can result in
large values from specular highlights, the MAE loss is cal-
culated on log(1+x), where x refers to the direct light only
synthetic input and the re-rendered image.

3.4. Joint Shape and SVBRDF Refinement
In our cascaded network, we use the estimated depth to

guide the SVBRDF prediction. Likewise, one can obtain
better depth prediction with known SVBRDF. We jointly
optimize depth, normals, and SVBRDF using a separate re-
finement network. For this refinement, all the earlier pre-
dictions along with the residual loss image between the
re-rendered previous result and the input flash image are
used. The network architecture is a small CNN encoder
and decoder of 3 steps, each with 4 ResNet blocks [20] in-
between. The loss function is an MAE loss between the
predicted parameter maps and ground truth ones.

3.5. Implementation
The cascaded networks along with the differentiable

renderer are implemented in Tensorflow [1]. The overall
pipeline consists of 4 networks, as illustrated in Fig. 2.

Runtime Each of the networks is relatively small, and the
overall inference pipeline takes 700ms on a 256×256 image
on an NVIDIA 1080 TI, including the required rendering
step. On a Google Pixel 4, the evaluation takes roughly
6 seconds. The rendering step is implemented in software
and takes 220ms on a single-threaded desktop CPU (AMD
Ryzen 7 1700) and similar speeds on a Google Pixel 4.

Training All the networks are trained for 200 epochs with
1500 steps per epoch using the ADAM optimizer [25] with a
learning rate of 2e−4 at the beginning, which is reduced by
half after 100 epochs. The networks are trained sequentially
as each network in the cascade uses the result of earlier net-
works as input.

Mobile Application for Scene Capture and Inference In
addition to producing better results, another major advan-
tage of the cascaded network design compared to a single
joint network is that each of the sub-networks is small, and

the overall network can fit on mobile hardware. We con-
vert the network models to Tensorflow Lite that runs on
mobile hardware and develop a highly practical android ap-
plication that can successively capture two-shot flash and
no-flash images and runs the cascaded network to estimate
SVBRDF and shape. We use on-device GrabCut [49] to
obtain the object mask. In Fig. 8 a prediction from the mo-
bile application is shown. Refer to supplementary for more
details on the mobile application and further predictions.

4. Large-scale SVBRDF & Shape Dataset
It is very time consuming and expensive to scan SVBRF

of real-world objects. Since we rely on deep learning tech-
niques for SVBRDF and shape estimation, vast amounts of
data are needed for network supervision. We create a large-
scale synthetic dataset with realistic SVBRDF materials.
High-quality Material Collection We gather a collec-
tion of publicly available human-authored, high-quality
SVBRDF maps from various online sources [45, 13, 65, 10,
55, 58]. The parameterization of these collected SVBRDF
maps is for the Cook-Torrence model [12]. In total, the col-
lection consists of 1125 high-resolution SVBRDF maps. To
further increase the material pool, we randomly resize and
take 768 × 768 crops of these material maps. We addi-
tionally apply random overlays together with simple con-
trast, hue, and brightness changes. The final material pool
contains 11,250 material maps. Sample material maps are
shown in Fig. 4.
Domain Randomized Object Shapes One option for gen-
erating 3D objects is to gather realistic object meshes and
apply materials to those. However, it is challenging to col-
lect large-scale object mesh data covering a wide range of
object categories. Moreover, mapping the object meshes to
the corresponding materials (e.g., using ceramic materials
for teapots) would result in a small dataset, and thus, ap-
plying random materials to object meshes is a reasonable
strategy. We notice that applying random material maps
to complex-shaped object meshes would result in distorted
texture or tiling artifacts. Because of these numerous chal-
lenges, we choose to randomize object shapes to synthe-
size large-scale data. Following Xu et al. [63], a randomly
chosen material is applied to 9 different shape primitives
such as spheres, cones, cylinders, tori, etc. We randomly
choose 6 to 7 material-mapped primitive shapes and place
them randomly to assemble a scene. Sample object shape
primitives are shown in Fig. 4. This strategy is similar to
domain randomization [56] (DR) that is shown to be useful
in high-level semantic tasks such as object detection [57].
Here, we demonstrate the use of DR for the low-level yet
complex task of SVBRDF and shape estimation. For sim-
plicity, we refer to our material-mapped and geometry ran-
domized object shapes as DR objects. Fig. 4 shows sample
primitive shapes, materials and resulting DR objects with
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Figure 4: Large-scale Synthetic Dataset. (Left) Samples of primitive shapes and materials used for the dataset creation,
(Right) The visualization of two examples with various properties.

GT shape and SVBRDF parameters.

HDR Illumination For environment illumination, we col-
lect 285 high-dynamic-range (HDR) illumination maps
from [64]. These maps are images in latitude-longitude for-
mat, which are wrapped on the inside of a sphere, which
acts as a light source for the DR object.

Rendering We use the Mitsuba [22] renderer to create two-
shot flash and no-flash images of a DR object illuminated
with a randomly chosen illumination. In total, the DR
dataset contains 100K generated scenes. Note that each DR
object consists of differently sampled primitive shapes, and
the distance of the closest surface from the camera varies
across different DR objects. This setup mimics the real-
world capture setting where the object distance to the cam-
era varies. For the no-flash image rendering, the camera
position is slightly shifted to mimic the camera shake in a
mobile scene capture.

In addition to the two-shot flash and no-flash images, we
also render another flash image that only has direct illumi-
nation. This direct illumination flash image is used to addi-
tionally supervise the SVBRDF network after differentiable
rendering (Sec. 3.3). This direct illumination only image
is solely used for training supervision and is not required
for inference. Besides, we render GT depth, normals, dif-
fuse albedo, specular albedo, and roughness maps, using
Mitsuba [22], that are used for direct network supervision.
Fig. 4 shows samples from this dataset with more in the sup-
plementary, which also provides additional details on the
rendering setup.

5. Experiments
We evaluate our approach on both synthetic and real

datasets and compared with several baseline techniques. In
this section, we present both quantitative and qualitative re-
sults and refer to the supplementary materials for further
visual results and comparisons.

Test datasets We quantitatively validate the proposed

method on synthetic data with realistic object shapes and
SVBRDF and also qualitatively on a real-world two-shot
image dataset [5]. Images of both of these datasets are un-
seen during network training. For synthetic test data, we
collected 20 freely available, fully textured 3D objects with
realistic shapes and materials [11]. These objects are ren-
dered using the Mitsuba renderer [22] with unseen HDR
illumination maps. Fig. 5 and 6 show samples of two-shot
input images of our synthetic test dataset.

For real-world evaluation, we use two-shot images
from the recent ’flash and ambient illuminations dataset’
from [5]. We have created foreground object masks on
several samples from the ’Objects’ and ’Toys’ category, as
these fit the single object assumption. This dataset does
not contain ground truth BRDF parameters, but the visual
quality can be inspected on the estimations and also on re-
renderings with different camera views and illuminations.

Metrics To evaluate the quality of the shape and SVBRDF
predictions, we mainly use metrics that directly compare
the ground truth (GT) and predictions. For the depth and
normal estimations, a Mean Square Error (MSE) is a fitting
candidate. To enable comparisons with methods that pre-
dict relative depths, we employ a Scale-Shift Invariant Met-
ric as in [26]. Refer to the supplementary for details. For
SVBRDFs, there exists no clear metric which aligns with
human perception of materials. Following previous works,
we also use the MSE metric on SVBRDF prediction maps.

5.1. Ablation Study
Within our framework, we empirically evaluate different

choices we make in our network design.

Cascade vs. Joint Network We compare our cascaded net-
work with a single large joint network that estimates all the
shape and SVBRDF parameters together. For a fair com-
parison, we design a joint (JN) that has a comparable num-
ber of network parameters as our cascaded network (CN)
(‘Ours-CN’ vs. ‘Ours-JN’). The JN follows the U-Net [48]
architecture. Table 1 shows the quantitative comparisons
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Figure 5: Comparison with Li et al. [36]. Ours estimates the diffuse, depth and normal more accurately in particular.
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Figure 6: Comparison with Barron et al. [7] (SIRFS).
Barron et al. does not estimate specular and roughness pa-
rameters.

Method Diffuse Specular Roughness Normal Depth

MiDaS [26] NA NA NA NA [0.006]
SIRFS [7] [0.033] NA NA 0.089 [0.021]

RAFII [43] [0.018] NA NA NA NA
Li et al. [36] 0.160/[0.019] NA 0.072 0.034 [0.024]

Ours-JN 0.065/[0.022] 0.053 0.064 0.025 [0.005]
Ours-CN 0.060/[0.018] 0.047 0.061 0.021 [0.004]

Table 1: State-of-the-art comparison. The Mean Square
Error (MSE) on a sample dataset of 20 unseen objects.
Scale and shift invariant metric in [.] where it applies. For
the diffuse color this metric is only scale invariant.

between them. Results indicate that the CN consistently
outperforms JN on both SVBRDF and shape estimations,
by a significant margin. This empirically underlines the
usefulness of our guided stage-wise estimation and joint re-
finement compared to using a single large network for joint

SVBRDF and shape estimation.

Merge vs. Standard Convolutions for Shape Estima-
tion Another technical innovation in this work is the use of
MergeConv blocks (Sec. 3.1) in the shape estimation net-
work instead of standard convolution. Overall the depth es-
timation error decreased from a MSE of 0.021 to 0.016 and
the normal MSE from 0.026 to 0.021.

5.2. Comparisons with state-of-the-art
As per our knowledge, we are the first work that uses

two-shot images as input and does complete SVBRDF es-
timation, including specular color and shape estimation for
objects. Most existing closely related techniques usually
use a single flash image as input and either work only on
flat surfaces [14, 15, 35, 32], or do not estimate the spec-
ular color [36]. Although our approach features a unique
setting, we perform the comparisons with SIRFS [7], Li et
al. [36], and RAFII [43] on SVBRDF and shape estimation.
SIRFS [7] uses a no-flash single image as input and predicts
diffuse albedo, shading, and shape using an optimization-
based approach. RAFII [43] uses a single non-flash image
to perform the intrinsic decomposition. Visual results are
shown in the supplementary. Based on a single flash image
Li et al. [36] is a recent deep learning approach that predicts
diffuse albedo, roughness, normal, and depth maps.

Quantitative results on the 20 objects synthetic test
dataset shown in Table 1 demonstrate the superior perfor-
mance of our approach (Ours-CascadeNet) compared to
both SIRFS [7] and Li et al. [36]. Since SIRFS predicts
diffuse albedo only up to a scale factor, we also report scale-
invariant MSE scores on diffuse albedo. Fig. 5 shows a vi-
sual comparison with Li et al. [36]. Our estimations are also
visually closer to GT. Especially, we can observe clear vi-
sual differences in predicted diffuse albedos where the light
information is separated much better in our result. Further-
more, the general shape of the object in the normal map of
our method follows the contour of the croissant, while the
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Figure 7: Real-world comparison. Comparison with Li et al. [36] on a real-world sample from [5].
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Figure 8: Mobile capture and inference. A result from our mobile application that does two-shot image capture followed
by SVBRDF and shape estimation.

method of Li et al. predicts a mostly flat shape. The details
in the roughness and normal map, on the other hand, are not
perfectly predicted by neither method.

Fig. 6 shows a visual comparison with SIRFS, where we
again observe our method predictions to be closer to GT.
Here, the improvements in the diffuse and normal map are
apparent. The SIRFS method fails in this example to sepa-
rate shape from shading.

A visual comparison between Li et al. [36] on a real-
world example from Yagiz et al. [5] is shown in Fig. 7.
Our method seems to capture the object color as well as the
shape better. The shape from Li et al. is predicted as a nearly
flat surface. This is apparent in the novel re-rendering. Our
predicted normal map is also smoother with fewer artifacts
and follows the bottle shape closely.

For evaluating depth prediction, we compare our depth
estimates against those from a new state-of-the-art monoc-
ular depth network of MiDaS [26]. MiDaS is trained with
several existing depth datasets and is quiet robust to dif-
ferent scene types. MiDaS [26] predicts the relative depth,
and for comparisons, a scale-shift invariant MSE metric is
used. Table 1 shows the results indicating better depth esti-
mations using our approach. We present qualitative results
in the supplementary.

Mobile capture and inference To further showcase our
real-world performance, Fig. 8 presents an example cap-
tured with our mobile application. As seen, most param-
eters are plausible. The lid on top of the electric kettle is,
however, estimated slightly too far away in the depth map.

This can be attributed to the ’deep is dark’ ambiguity. Here,
we want to point out that there is an additional challenge of
an unknown mobile camera capture pipeline. A RAW im-
age capture would avoid most of the unknown image pre-
processing in modern cameras.

6. Conclusion
We proposed a novel cascaded network design coupled

with guided prediction networks for SVBRDF and shape
estimation from two-shot images. Our key insight is that
the separation of tasks and stage-wise prediction can lead
to significantly better results compared to joint estimation
with a single large network. We use a two-shot capture set-
ting, which is practical and helps in estimating higher qual-
ity SVBRDF and shape compared to existing works. All
of our image capture, network inference, and rendering can
be easily implemented on mobile hardware. Another key
contribution is the creation of large-scale synthetic training
data with domain-randomized geometry and carefully col-
lected materials. We show that networks trained on this data
can generalize well to real-world objects. In the future, we
would like to tackle the SVBRDF estimation of more com-
plex mirror-like objects by incorporating reflection removal
techniques and anisotropic BRDF models.
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Supplementary

A. Scale-Shift Invariant Metric
To allow for a fair comparisons we employ a scale and

shift invariant loss for methods which either produce rela-
tive depth or depth in a different scale. A specialized scale
invariant loss formulation for a comparison with intrinsic
imaging based papers, as the predicted diffuse color is not
subject to an absolute scale as diffuse albedo parameter is.
To achieve the scale and shift in-variance we define it as

L(x, xgt) = argmin
α,β

1

2D

D∑
i=1

(αxi + β − xgt
i )

2 (3)

where α accounts for the scale and β for the shift, D for
the image dimension, x for the predicted result and xgt for
the corresponding ground truth. For the scale invariant loss
only the α is optimized.

B. Detailed Network Architectures
The proposed cascaded network architecture uses four

distinct network architectures. In the following we will de-
note a regular 2D convolution with a kernel size of 4, a
stride of 2, InstanceNorm, ReLU activation and k filters as
c-k. A transposed convolution is called ct-k with the
same kernel size, stride, and activations.
Shape Estimation with Merge Convolutions: The input of
the shape estimation network is the two-shot input images
and the segmentation mask. We use MergeConv blocks in
an encoder-decoder architecture. Refer to the paper for de-
tails about a MergeConv block. We use four MergeConv
blocks for encoding and also for decoding in U-net inspired
shape [48]. The initial input each of the pathways is one
of the two-shot input images channel stacked with the seg-
mentation mask.

To denote the network architecture, we use the following
naming scheme. A MergeConv block with a kernel size of
4, a stride of 2, InstanceNorm, and ReLU activation is de-
noted as mo-k. Here, k defines the number of output filters
for the merged and input pathways. Upsampling or down-
sampling is denoted in o, where d is used for the down-
sampling operation and u for the upsampling. A regular
convolution with a kernel size of 5 and a stride of 1 is de-
noted as c-k. The k parameter also defines the number of
output features, and a sigmoid activation function is used.
The network architecture is described as:

md-32, md-64, md-128, md-256, mu-256,
mu-128, mu-64, mu-32, c-4

Shape Guided Illumination Estimation: The input for this
network architecture now consists of the two-shot input im-
ages, the segmentation mask, and the previous shape esti-
mation (Normals and Depth). Here, we do not employ the

merge convolutions, and all inputs are channel stacked. As
the network output is 24 RGB values, we only employ an
encoder, followed by fully connected blocks. An additional
convolution operation is denoted as cn-k, with a kernel
size of 3, a stride of 2, and a ReLU activation. Lastly, a
fully connected layer is referred to as f-k. The architec-
ture is then denoted as:
c-16, c-32, c-64, c-128, c-256,

c-256, cn-256, cn-512, f-256, ReLU,
f-72, Sigmoid

The last fully-connected consists of 72 outputs, which
corresponds to 24 RGB values for the spherical Gaussian
amplitudes.
Guided SVBRDF Estimation: For BRDF prediction, we
stack the channels of the previous predictions and the two-
shot input images. The illumination prediction is here ap-
pended to each pixel of the input images. An additional
output convolution is referred to as co-k with a kernel size
of 5, a stride of 1, and sigmoid activation. The network
architecture is defined as:
c-32, c-64, c-96, c-128, c-160,

c-192, ct-192, ct-160, ct-128, ct-96,
ct-64, ct-32, co-7

Joint Shape and SVBRDF Refinement: Similar to the
BRDF estimation, we stack each of the previous predictions
in the channel dimensions. We also add the residual loss
image between the input flash image and the re-rendered
initial predictions. A resnet block here consists of two pre-
activated 2D convolutions with a kernel size of 3, a stride of
1, InstanceNorm, and ReLU activation. The shortcut con-
nection is added from the input to the final block output.
The block is denoted as r-k. A final output convolution is
denoted as c0-k with a kernel size of 5, a stride of 1, and a
sigmoid activation. The overall network is described as:
c-64, c-128, c-256, r-256, r-256,

r-256, r-256, ct-256, ct-128, ct-64,
co-11

The final output consists of 11 channels corresponding
to diffuse (3), specular (3), roughness (1), depth (1), and
normal (3).

C. Mobile Application

The mobile android application is written in kotlin and
handles the capturing of objects, the segmentation, and pre-
diction. The capturing automatically takes the two-shot in-
put pair. The segmentation is done using OpenCV’s Grab-
Cut implementation on the device. For the prediction, we
converted the trained models to TensorFlow lite. Here, we
do not use quantization as the results degraded too harshly.
An aware quantization training could remedy this effect. A
quantized output and model increases the prediction speed
even further, but it is already reasonably fast. On recent mo-
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Figure 9: Spherical Gaussian Environment Illumination. Visualization of an environment with varying number of spher-
ical Gaussians. The top row shows the evaluated spherical Gaussians, and the bottom rows show two spheres rendered with
the spherical Gaussian approximation. Here, the left sphere is a glossy and the right a rough material.

bile phones (Pixel 4, Pixel 2, OnePlus 6t), the full inference
takes about 6 seconds.

D. Rendering Setup
Rendering the domain randomized shape in a realistic

setup for real-world usage is a crucial aspect of a success-
ful domain transfer. To achieve this, our rendering setup
closely follows real-world scenarios. The camera is posi-
tioned randomly on a sphere with a radius of 70cm from the
origin. The objects are constructed at the origin, and due to
the random translation, rotation and scaling can grow up to
17cm distance from the camera. This is a reasonable dis-
tance between an object and a mobile phone for real-world
capture. To always have the object in focus, the camera
view is rotated towards the origin.

The flash-light is approximated as a point light source
and positioned in a 2cm radius around the camera with a
flash strength of 45 Lumen, which are typical settings of
smartphone cameras and flashes.

For the flash image, we separately rendered two HDR
images with only flash and only environment illumination
and linearly combine these two HDR renderings to obtain
the final flash image. This strategy allows us to randomly
vary the flash strength by using randomly sampled weights
for a linear combination of the ambient and flash rendering.
As the network receives LDR input images, we perform a
Saturation Based Sensitivity auto exposure calculation [21].

In Fig. 9, the effect of a varying number of spherical
Gaussians (SG) is shown. As seen, the detail and sharpness
of the environment and object illumination increases with
a growing number of SGs. As a compromise of estimating
too many parameters, our method predicts 24 SGs.

Our SGs are parametrized by the direction µ, the sharp-
ness λ, and the amplitude α of the lobe. The lobe is then
defined as:

G(v;µ, λ, α) = αeλ·v−1 (4)

where v now represents the evaluation direction. Further

details about the evaluation and the BRDF SG fitting are
based on [60].

E. Results

We analyze the prediction quality improvements in syn-
thetic examples. Further real-world and synthetic results are
available as a website in the supplementary.

E.1. Visual Comparison with Lasinger et al.

Larsinger et al. [26] predicts the relative depth from a
single input image. We use the scale and shift-invariant
metric to compare our work with theirs. In Fig. 10 several
prediction examples are shown.

The first example is a sheet of wood formed into a com-
plex object. Lasinger et al. and our method struggle with
this object. However, overall, our method follows the shape
of the object much closer and plausible than Lasinger et al.
In the second example, our method predicts the shape of
the baseball also closer. Here, the closest point is correctly
predicted in the center of the ball. In the last example, the
top of the pot is also predicted slightly better. Lasinger et
al. nearly predicts the top part to be nearly flat while ours
follows the curved, extending top.

E.2. Visual Comparison with Nestmeyer et al.

Additional comparisons with Nestmeyer et al. [43] are
shown in Fig. 11. Here, we want to highlight that our
method tackles a complex BRDF model, which is more
difficult to disentangle than the intrinsic imaging model of
Nestmeyer et al. Due to this, we only compare, similar
to Barron et al., with the scale-invariant diffuse color. As
seen, our method can reconstruct the diffuse color either
with equal quality or surpass the prediction quality of Nest-
meyer et al. Especially texture details are preserved better
in our method.
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Figure 10: Comparison with Lasinger et al. Even on chal-
lenging shapes as the first example, our method provides a
more accurate prediction.

E.3. Additional Comparison with Barron et al.

As Barron et al. [7] predict a relative depth and the re-
flectance, which is a non-absolute diffuse color, we employ
a scale-shift invariant loss for the depth map and a scale-
invariant for the diffuse color. In Fig. 12 we compare our
predictions with theirs.
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Figure 11: Comparison with Nestmeyer et al. In many
cases our predictions is on par or surpases Nestmeyer et al.
with a more complex BRDF model to disentangle.

Our method, in general, provides advances in the shape
prediction with improved depth and normal parameters. In
general, the features are captured more accurate and plau-
sible. The material color is also separated better from the
shading. This is especially visible in the last two examples
where Barron et al. predicted most of the color in the shad-
ing of the objects.

11



Input Diffuse Normal Depth
Fl
as
h

Ba
rr
on

et
al
.

MSE: 0.013 MSE: 0.082 MSE: 0.006

N
o
Fl
as
h

G
T

M
as
k

O
ur
s

MSE: 0.010 MSE: 0.019 MSE: 0.002
Input Diffuse Normal Depth

Fl
as
h

Ba
rr
on

et
al
.

MSE: 0.011 MSE: 0.068 MSE: 0.013

N
o
Fl
as
h

G
T

M
as
k

O
ur
s

MSE: 0.006 MSE: 0.022 MSE: 0.001
Input Diffuse Normal Depth

Fl
as
h

Ba
rr
on

et
al
.

MSE: 0.091 MSE: 0.061 MSE: 0.017

N
o
Fl
as
h

G
T

M
as
k

O
ur
s

MSE: 0.011 MSE: 0.019 MSE: 0.004
Input Diffuse Normal Depth

Fl
as
h

Ba
rr
on

et
al
.

MSE: 0.054 MSE: 0.082 MSE: 0.030

N
o
Fl
as
h

G
T

M
as
k

O
ur
s

MSE: 0.005 MSE: 0.011 MSE: 0.001

Figure 12: Comparison with Barron et al. Notice the
overall improved shape and diffuse accuracy in the predic-
tion.

E.4. Additional Comparison with Li et al.

We also provide more comparisons with Li et al. [36].
The results are shown in Fig. 13. In the depth map, the im-
proved performance of our method is apparent. In the first
example, Li et al. predict the barrel to be concave instead

of convex. The bottom is also predicted as the closest point
to the camera. Our method captures the general shape of
the object quite well but also struggles with the top of the
barrel slightly. Here, the visible top rim in the back is not
predicted accurately as well as the top plate of the barrel.
In the second example, Li et al. predict the baseball to be
concave again. Our method predicts the spherical nature of
the ball accurately. In the last example, the method of Li
et al. again fails to predict the shape of the box correctly.
Here, the corner closest to the user is predicted far away,
and the sides in the bottom are predicted closer. In general,
our method also produces smoother and more accurate nor-
mal maps, but are not as detailed as the normals from Li et
al. This can be attributed to our cascaded network design,
which still can not leverage correlations between maps as
well as the joint prediction model. Our method also reduces
the visible shading in the diffuse parameters, and the high-
lights from the flash input and environment illumination are
less visible.
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